MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopeqop Structured version   Visualization version   Unicode version

Theorem snopeqop 4969
Description: Equivalence for an ordered pair equal to a singleton of an ordered pair. (Contributed by AV, 18-Sep-2020.)
Hypotheses
Ref Expression
snopeqop.a  |-  A  e. 
_V
snopeqop.b  |-  B  e. 
_V
snopeqop.c  |-  C  e. 
_V
snopeqop.d  |-  D  e. 
_V
Assertion
Ref Expression
snopeqop  |-  ( {
<. A ,  B >. }  =  <. C ,  D >.  <-> 
( A  =  B  /\  C  =  D  /\  C  =  { A } ) )

Proof of Theorem snopeqop
StepHypRef Expression
1 snopeqop.a . . . 4  |-  A  e. 
_V
2 snopeqop.b . . . 4  |-  B  e. 
_V
3 snopeqop.c . . . 4  |-  C  e. 
_V
41, 2, 3opeqsn 4967 . . 3  |-  ( <. A ,  B >.  =  { C }  <->  ( A  =  B  /\  C  =  { A } ) )
54anbi2i 730 . 2  |-  ( ( C  =  D  /\  <. A ,  B >.  =  { C } )  <-> 
( C  =  D  /\  ( A  =  B  /\  C  =  { A } ) ) )
6 eqcom 2629 . . 3  |-  ( {
<. A ,  B >. }  =  <. C ,  D >.  <->  <. C ,  D >.  =  { <. A ,  B >. } )
7 snopeqop.d . . . 4  |-  D  e. 
_V
8 opex 4932 . . . 4  |-  <. A ,  B >.  e.  _V
93, 7, 8opeqsn 4967 . . 3  |-  ( <. C ,  D >.  =  { <. A ,  B >. }  <->  ( C  =  D  /\  <. A ,  B >.  =  { C } ) )
106, 9bitri 264 . 2  |-  ( {
<. A ,  B >. }  =  <. C ,  D >.  <-> 
( C  =  D  /\  <. A ,  B >.  =  { C }
) )
11 3anan12 1051 . 2  |-  ( ( A  =  B  /\  C  =  D  /\  C  =  { A } )  <->  ( C  =  D  /\  ( A  =  B  /\  C  =  { A } ) ) )
125, 10, 113bitr4i 292 1  |-  ( {
<. A ,  B >. }  =  <. C ,  D >.  <-> 
( A  =  B  /\  C  =  D  /\  C  =  { A } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  funopsn  6413  funsneqopsn  6417
  Copyright terms: Public domain W3C validator