MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soeq2 Structured version   Visualization version   GIF version

Theorem soeq2 5055
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq2 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))

Proof of Theorem soeq2
StepHypRef Expression
1 soss 5053 . . . 4 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
2 soss 5053 . . . 4 (𝐵𝐴 → (𝑅 Or 𝐴𝑅 Or 𝐵))
31, 2anim12i 590 . . 3 ((𝐴𝐵𝐵𝐴) → ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
4 eqss 3618 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 dfbi2 660 . . 3 ((𝑅 Or 𝐵𝑅 Or 𝐴) ↔ ((𝑅 Or 𝐵𝑅 Or 𝐴) ∧ (𝑅 Or 𝐴𝑅 Or 𝐵)))
63, 4, 53imtr4i 281 . 2 (𝐴 = 𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
76bicomd 213 1 (𝐴 = 𝐵 → (𝑅 Or 𝐴𝑅 Or 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wss 3574   Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-in 3581  df-ss 3588  df-po 5035  df-so 5036
This theorem is referenced by:  weeq2  5103  wemapso2  8458  oemapso  8579  fin2i  9117  isfin2-2  9141  fin1a2lem10  9231  zorn2lem7  9324  zornn0g  9327  opsrtoslem2  19485  sltsolem1  31826  soeq12d  37608  aomclem1  37624
  Copyright terms: Public domain W3C validator