MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soss Structured version   Visualization version   GIF version

Theorem soss 5053
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
soss (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))

Proof of Theorem soss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 5037 . . 3 (𝐴𝐵 → (𝑅 Po 𝐵𝑅 Po 𝐴))
2 ssel 3597 . . . . . . 7 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
3 ssel 3597 . . . . . . 7 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
42, 3anim12d 586 . . . . . 6 (𝐴𝐵 → ((𝑥𝐴𝑦𝐴) → (𝑥𝐵𝑦𝐵)))
54imim1d 82 . . . . 5 (𝐴𝐵 → (((𝑥𝐵𝑦𝐵) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
652alimdv 1847 . . . 4 (𝐴𝐵 → (∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
7 r2al 2939 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐵𝑦𝐵) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
8 r2al 2939 . . . 4 (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
96, 7, 83imtr4g 285 . . 3 (𝐴𝐵 → (∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
101, 9anim12d 586 . 2 (𝐴𝐵 → ((𝑅 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)) → (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))))
11 df-so 5036 . 2 (𝑅 Or 𝐵 ↔ (𝑅 Po 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
12 df-so 5036 . 2 (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
1310, 11, 123imtr4g 285 1 (𝐴𝐵 → (𝑅 Or 𝐵𝑅 Or 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3o 1036  wal 1481  wcel 1990  wral 2912  wss 3574   class class class wbr 4653   Po wpo 5033   Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-in 3581  df-ss 3588  df-po 5035  df-so 5036
This theorem is referenced by:  soeq2  5055  wess  5101  wereu  5110  wereu2  5111  ordunifi  8210  fisup2g  8374  fisupcl  8375  fiinf2g  8406  ordtypelem8  8430  wemapso2lem  8457  iunfictbso  8937  fin1a2lem10  9231  fin1a2lem11  9232  zornn0g  9327  ltsopi  9710  npomex  9818  fimaxre  10968  suprfinzcl  11492  isercolllem1  14395  summolem2  14447  zsum  14449  prodmolem2  14665  zprod  14667  gsumval3  18308  iccpnfhmeo  22744  xrhmeo  22745  dvgt0lem2  23766  dgrval  23984  dgrcl  23989  dgrub  23990  dgrlb  23992  aannenlem3  24085  logccv  24409  xrge0infssd  29526  infxrge0lb  29529  infxrge0glb  29530  infxrge0gelb  29531  ssnnssfz  29549  xrge0iifiso  29981  omsfval  30356  omsf  30358  oms0  30359  omssubaddlem  30361  omssubadd  30362  oddpwdc  30416  erdszelem4  31176  erdszelem8  31180  erdsze2lem1  31185  erdsze2lem2  31186  supfz  31613  inffz  31614  inffzOLD  31615  nomaxmo  31847  fin2so  33396  rencldnfilem  37384  fzisoeu  39514  fourierdlem36  40360  ssnn0ssfz  42127
  Copyright terms: Public domain W3C validator