MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapso Structured version   Visualization version   GIF version

Theorem oemapso 8579
Description: The relation 𝑇 is a strict order on 𝑆 (a corollary of wemapso2 8458). (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
oemapso (𝜑𝑇 Or 𝑆)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oemapso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
2 eloni 5733 . . . . 5 (𝐵 ∈ On → Ord 𝐵)
3 ordwe 5736 . . . . 5 (Ord 𝐵 → E We 𝐵)
4 weso 5105 . . . . 5 ( E We 𝐵 → E Or 𝐵)
51, 2, 3, 44syl 19 . . . 4 (𝜑 → E Or 𝐵)
6 cnvso 5674 . . . 4 ( E Or 𝐵 E Or 𝐵)
75, 6sylib 208 . . 3 (𝜑 E Or 𝐵)
8 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
9 eloni 5733 . . . 4 (𝐴 ∈ On → Ord 𝐴)
10 ordwe 5736 . . . 4 (Ord 𝐴 → E We 𝐴)
11 weso 5105 . . . 4 ( E We 𝐴 → E Or 𝐴)
128, 9, 10, 114syl 19 . . 3 (𝜑 → E Or 𝐴)
13 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
14 fvex 6201 . . . . . . . . 9 (𝑦𝑧) ∈ V
1514epelc 5031 . . . . . . . 8 ((𝑥𝑧) E (𝑦𝑧) ↔ (𝑥𝑧) ∈ (𝑦𝑧))
16 vex 3203 . . . . . . . . . . . 12 𝑤 ∈ V
17 vex 3203 . . . . . . . . . . . 12 𝑧 ∈ V
1816, 17brcnv 5305 . . . . . . . . . . 11 (𝑤 E 𝑧𝑧 E 𝑤)
19 epel 5032 . . . . . . . . . . 11 (𝑧 E 𝑤𝑧𝑤)
2018, 19bitri 264 . . . . . . . . . 10 (𝑤 E 𝑧𝑧𝑤)
2120imbi1i 339 . . . . . . . . 9 ((𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2221ralbii 2980 . . . . . . . 8 (∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))
2315, 22anbi12i 733 . . . . . . 7 (((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2423rexbii 3041 . . . . . 6 (∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤))) ↔ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤))))
2524opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2613, 25eqtr4i 2647 . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) E (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑤 E 𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
27 breq1 4656 . . . . 5 (𝑔 = 𝑥 → (𝑔 finSupp ∅ ↔ 𝑥 finSupp ∅))
2827cbvrabv 3199 . . . 4 {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑥 ∈ (𝐴𝑚 𝐵) ∣ 𝑥 finSupp ∅}
2926, 28wemapso2 8458 . . 3 ((𝐵 ∈ On ∧ E Or 𝐵 ∧ E Or 𝐴) → 𝑇 Or {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
301, 7, 12, 29syl3anc 1326 . 2 (𝜑𝑇 Or {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
31 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
32 eqid 2622 . . . . 5 {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
3332, 8, 1cantnfdm 8561 . . . 4 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
3431, 33syl5eq 2668 . . 3 (𝜑𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
35 soeq2 5055 . . 3 (𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}))
3634, 35syl 17 . 2 (𝜑 → (𝑇 Or 𝑆𝑇 Or {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}))
3730, 36mpbird 247 1 (𝜑𝑇 Or 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  c0 3915   class class class wbr 4653  {copab 4712   E cep 5028   Or wor 5034   We wwe 5072  ccnv 5113  dom cdm 5114  Ord word 5722  Oncon0 5723  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275   CNF ccnf 8558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-fin 7959  df-fsupp 8276  df-cnf 8559
This theorem is referenced by:  cantnf  8590
  Copyright terms: Public domain W3C validator