MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soex Structured version   Visualization version   GIF version

Theorem soex 7109
Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
soex ((𝑅 Or 𝐴𝑅𝑉) → 𝐴 ∈ V)

Proof of Theorem soex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 = ∅) → 𝐴 = ∅)
2 0ex 4790 . . 3 ∅ ∈ V
31, 2syl6eqel 2709 . 2 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 = ∅) → 𝐴 ∈ V)
4 n0 3931 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 snex 4908 . . . . . . . . 9 {𝑥} ∈ V
6 dmexg 7097 . . . . . . . . . 10 (𝑅𝑉 → dom 𝑅 ∈ V)
7 rnexg 7098 . . . . . . . . . 10 (𝑅𝑉 → ran 𝑅 ∈ V)
8 unexg 6959 . . . . . . . . . 10 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
96, 7, 8syl2anc 693 . . . . . . . . 9 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
10 unexg 6959 . . . . . . . . 9 (({𝑥} ∈ V ∧ (dom 𝑅 ∪ ran 𝑅) ∈ V) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
115, 9, 10sylancr 695 . . . . . . . 8 (𝑅𝑉 → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
1211ad2antlr 763 . . . . . . 7 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ∈ V)
13 sossfld 5580 . . . . . . . . 9 ((𝑅 Or 𝐴𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
1413adantlr 751 . . . . . . . 8 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
15 ssundif 4052 . . . . . . . 8 (𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)) ↔ (𝐴 ∖ {𝑥}) ⊆ (dom 𝑅 ∪ ran 𝑅))
1614, 15sylibr 224 . . . . . . 7 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → 𝐴 ⊆ ({𝑥} ∪ (dom 𝑅 ∪ ran 𝑅)))
1712, 16ssexd 4805 . . . . . 6 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝑥𝐴) → 𝐴 ∈ V)
1817ex 450 . . . . 5 ((𝑅 Or 𝐴𝑅𝑉) → (𝑥𝐴𝐴 ∈ V))
1918exlimdv 1861 . . . 4 ((𝑅 Or 𝐴𝑅𝑉) → (∃𝑥 𝑥𝐴𝐴 ∈ V))
2019imp 445 . . 3 (((𝑅 Or 𝐴𝑅𝑉) ∧ ∃𝑥 𝑥𝐴) → 𝐴 ∈ V)
214, 20sylan2b 492 . 2 (((𝑅 Or 𝐴𝑅𝑉) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
223, 21pm2.61dane 2881 1 ((𝑅 Or 𝐴𝑅𝑉) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  Vcvv 3200  cdif 3571  cun 3572  wss 3574  c0 3915  {csn 4177   Or wor 5034  dom cdm 5114  ran crn 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  ween  8858  zorn2lem1  9318  zorn2lem4  9321
  Copyright terms: Public domain W3C validator