MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgisid Structured version   Visualization version   GIF version

Theorem srgisid 18528
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b 𝐵 = (Base‘𝑅)
srgz.t · = (.r𝑅)
srgz.z 0 = (0g𝑅)
srgisid.1 (𝜑𝑅 ∈ SRing)
srgisid.2 (𝜑𝑍𝐵)
srgisid.3 ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)
Assertion
Ref Expression
srgisid (𝜑𝑍 = 0 )
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥, 0   𝑥,𝑍   𝜑,𝑥

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4 ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)
21ralrimiva 2966 . . 3 (𝜑 → ∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍)
3 srgisid.1 . . . 4 (𝜑𝑅 ∈ SRing)
4 srgz.b . . . . 5 𝐵 = (Base‘𝑅)
5 srgz.z . . . . 5 0 = (0g𝑅)
64, 5srg0cl 18519 . . . 4 (𝑅 ∈ SRing → 0𝐵)
7 oveq2 6658 . . . . . 6 (𝑥 = 0 → (𝑍 · 𝑥) = (𝑍 · 0 ))
87eqeq1d 2624 . . . . 5 (𝑥 = 0 → ((𝑍 · 𝑥) = 𝑍 ↔ (𝑍 · 0 ) = 𝑍))
98rspcv 3305 . . . 4 ( 0𝐵 → (∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍))
103, 6, 93syl 18 . . 3 (𝜑 → (∀𝑥𝐵 (𝑍 · 𝑥) = 𝑍 → (𝑍 · 0 ) = 𝑍))
112, 10mpd 15 . 2 (𝜑 → (𝑍 · 0 ) = 𝑍)
12 srgisid.2 . . 3 (𝜑𝑍𝐵)
13 srgz.t . . . 4 · = (.r𝑅)
144, 13, 5srgrz 18526 . . 3 ((𝑅 ∈ SRing ∧ 𝑍𝐵) → (𝑍 · 0 ) = 0 )
153, 12, 14syl2anc 693 . 2 (𝜑 → (𝑍 · 0 ) = 0 )
1611, 15eqtr3d 2658 1 (𝜑𝑍 = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  0gc0g 16100  SRingcsrg 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195  df-srg 18506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator