MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srgisid Structured version   Visualization version   Unicode version

Theorem srgisid 18528
Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
Hypotheses
Ref Expression
srgz.b  |-  B  =  ( Base `  R
)
srgz.t  |-  .x.  =  ( .r `  R )
srgz.z  |-  .0.  =  ( 0g `  R )
srgisid.1  |-  ( ph  ->  R  e. SRing )
srgisid.2  |-  ( ph  ->  Z  e.  B )
srgisid.3  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
Assertion
Ref Expression
srgisid  |-  ( ph  ->  Z  =  .0.  )
Distinct variable groups:    x, B    x, R    x,  .x.    x,  .0.    x, Z    ph, x

Proof of Theorem srgisid
StepHypRef Expression
1 srgisid.3 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  ( Z  .x.  x )  =  Z )
21ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  B  ( Z  .x.  x )  =  Z )
3 srgisid.1 . . . 4  |-  ( ph  ->  R  e. SRing )
4 srgz.b . . . . 5  |-  B  =  ( Base `  R
)
5 srgz.z . . . . 5  |-  .0.  =  ( 0g `  R )
64, 5srg0cl 18519 . . . 4  |-  ( R  e. SRing  ->  .0.  e.  B
)
7 oveq2 6658 . . . . . 6  |-  ( x  =  .0.  ->  ( Z  .x.  x )  =  ( Z  .x.  .0.  ) )
87eqeq1d 2624 . . . . 5  |-  ( x  =  .0.  ->  (
( Z  .x.  x
)  =  Z  <->  ( Z  .x.  .0.  )  =  Z ) )
98rspcv 3305 . . . 4  |-  (  .0. 
e.  B  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z ) )
103, 6, 93syl 18 . . 3  |-  ( ph  ->  ( A. x  e.  B  ( Z  .x.  x )  =  Z  ->  ( Z  .x.  .0.  )  =  Z
) )
112, 10mpd 15 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  Z )
12 srgisid.2 . . 3  |-  ( ph  ->  Z  e.  B )
13 srgz.t . . . 4  |-  .x.  =  ( .r `  R )
144, 13, 5srgrz 18526 . . 3  |-  ( ( R  e. SRing  /\  Z  e.  B )  ->  ( Z  .x.  .0.  )  =  .0.  )
153, 12, 14syl2anc 693 . 2  |-  ( ph  ->  ( Z  .x.  .0.  )  =  .0.  )
1611, 15eqtr3d 2658 1  |-  ( ph  ->  Z  =  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   .rcmulr 15942   0gc0g 16100  SRingcsrg 18505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-cmn 18195  df-srg 18506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator