| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srgisid | Structured version Visualization version Unicode version | ||
| Description: In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) |
| Ref | Expression |
|---|---|
| srgz.b |
|
| srgz.t |
|
| srgz.z |
|
| srgisid.1 |
|
| srgisid.2 |
|
| srgisid.3 |
|
| Ref | Expression |
|---|---|
| srgisid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srgisid.3 |
. . . 4
| |
| 2 | 1 | ralrimiva 2966 |
. . 3
|
| 3 | srgisid.1 |
. . . 4
| |
| 4 | srgz.b |
. . . . 5
| |
| 5 | srgz.z |
. . . . 5
| |
| 6 | 4, 5 | srg0cl 18519 |
. . . 4
|
| 7 | oveq2 6658 |
. . . . . 6
| |
| 8 | 7 | eqeq1d 2624 |
. . . . 5
|
| 9 | 8 | rspcv 3305 |
. . . 4
|
| 10 | 3, 6, 9 | 3syl 18 |
. . 3
|
| 11 | 2, 10 | mpd 15 |
. 2
|
| 12 | srgisid.2 |
. . 3
| |
| 13 | srgz.t |
. . . 4
| |
| 14 | 4, 13, 5 | srgrz 18526 |
. . 3
|
| 15 | 3, 12, 14 | syl2anc 693 |
. 2
|
| 16 | 11, 15 | eqtr3d 2658 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-ov 6653 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-cmn 18195 df-srg 18506 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |