| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspsstrd | Structured version Visualization version GIF version | ||
| Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 3712. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| sspsstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sspsstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
| Ref | Expression |
|---|---|
| sspsstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspsstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sspsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
| 3 | sspsstr 3712 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
| 4 | 1, 2, 3 | syl2anc 693 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3574 ⊊ wpss 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ne 2795 df-in 3581 df-ss 3588 df-pss 3590 |
| This theorem is referenced by: marypha1lem 8339 ackbij1lem15 9056 fin23lem38 9171 ltexprlem2 9859 mrieqv2d 16299 |
| Copyright terms: Public domain | W3C validator |