MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrab3 Structured version   Visualization version   GIF version

Theorem ssrab3 3688
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1 𝐵 = {𝑥𝐴𝜑}
Assertion
Ref Expression
ssrab3 𝐵𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 ssrab2 3687 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
31, 2eqsstri 3635 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  {crab 2916  wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by:  usgrres  26200  frgrwopregbsn  27181  frgrwopreg1  27182  eulerpartlemgvv  30438  reprpmtf1o  30704  hgt750lemb  30734  hgt750leme  30736  bnj1212  30870  bnj213  30952  bnj1286  31087  bnj1312  31126  bnj1523  31139
  Copyright terms: Public domain W3C validator