| Step | Hyp | Ref
| Expression |
| 1 | | hgt750leme.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 2 | 1 | nnnn0d 11351 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 3 | | 3nn0 11310 |
. . . . . 6
⊢ 3 ∈
ℕ0 |
| 4 | 3 | a1i 11 |
. . . . 5
⊢ (𝜑 → 3 ∈
ℕ0) |
| 5 | | ssid 3624 |
. . . . . 6
⊢ ℕ
⊆ ℕ |
| 6 | 5 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ⊆
ℕ) |
| 7 | 2, 4, 6 | reprfi2 30701 |
. . . 4
⊢ (𝜑 →
(ℕ(repr‘3)𝑁)
∈ Fin) |
| 8 | | hgt750lemb.a |
. . . . 5
⊢ 𝐴 = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ)} |
| 9 | 8 | ssrab3 3688 |
. . . 4
⊢ 𝐴 ⊆
(ℕ(repr‘3)𝑁) |
| 10 | | ssfi 8180 |
. . . 4
⊢
(((ℕ(repr‘3)𝑁) ∈ Fin ∧ 𝐴 ⊆ (ℕ(repr‘3)𝑁)) → 𝐴 ∈ Fin) |
| 11 | 7, 9, 10 | sylancl 694 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 12 | | vmaf 24845 |
. . . . . 6
⊢
Λ:ℕ⟶ℝ |
| 13 | 12 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) →
Λ:ℕ⟶ℝ) |
| 14 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ℕ ⊆
ℕ) |
| 15 | 1 | nnzd 11481 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 16 | 15 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑁 ∈ ℤ) |
| 17 | 3 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 3 ∈
ℕ0) |
| 18 | | simpr 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ 𝐴) |
| 19 | 9, 18 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
| 20 | 14, 16, 17, 19 | reprf 30690 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑛:(0..^3)⟶ℕ) |
| 21 | | c0ex 10034 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 22 | 21 | tpid1 4303 |
. . . . . . . 8
⊢ 0 ∈
{0, 1, 2} |
| 23 | | fzo0to3tp 12554 |
. . . . . . . 8
⊢ (0..^3) =
{0, 1, 2} |
| 24 | 22, 23 | eleqtrri 2700 |
. . . . . . 7
⊢ 0 ∈
(0..^3) |
| 25 | 24 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 0 ∈ (0..^3)) |
| 26 | 20, 25 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℕ) |
| 27 | 13, 26 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘0)) ∈ ℝ) |
| 28 | | 1ex 10035 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 29 | 28 | tpid2 4304 |
. . . . . . . . 9
⊢ 1 ∈
{0, 1, 2} |
| 30 | 29, 23 | eleqtrri 2700 |
. . . . . . . 8
⊢ 1 ∈
(0..^3) |
| 31 | 30 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 1 ∈ (0..^3)) |
| 32 | 20, 31 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℕ) |
| 33 | 13, 32 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘1)) ∈ ℝ) |
| 34 | | 2ex 11092 |
. . . . . . . . . 10
⊢ 2 ∈
V |
| 35 | 34 | tpid3 4307 |
. . . . . . . . 9
⊢ 2 ∈
{0, 1, 2} |
| 36 | 35, 23 | eleqtrri 2700 |
. . . . . . . 8
⊢ 2 ∈
(0..^3) |
| 37 | 36 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 2 ∈ (0..^3)) |
| 38 | 20, 37 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℕ) |
| 39 | 13, 38 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘2)) ∈ ℝ) |
| 40 | 33, 39 | remulcld 10070 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))) ∈ ℝ) |
| 41 | 27, 40 | remulcld 10070 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈
ℝ) |
| 42 | 11, 41 | fsumrecl 14465 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ∈ ℝ) |
| 43 | 1 | nnrpd 11870 |
. . . 4
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
| 44 | 43 | relogcld 24369 |
. . 3
⊢ (𝜑 → (log‘𝑁) ∈
ℝ) |
| 45 | 27, 33 | remulcld 10070 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) ∈ ℝ) |
| 46 | 11, 45 | fsumrecl 14465 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ∈
ℝ) |
| 47 | 44, 46 | remulcld 10070 |
. 2
⊢ (𝜑 → ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) ∈
ℝ) |
| 48 | | fzfi 12771 |
. . . . . . . 8
⊢
(1...𝑁) ∈
Fin |
| 49 | | diffi 8192 |
. . . . . . . 8
⊢
((1...𝑁) ∈ Fin
→ ((1...𝑁) ∖
ℙ) ∈ Fin) |
| 50 | 48, 49 | ax-mp 5 |
. . . . . . 7
⊢
((1...𝑁) ∖
ℙ) ∈ Fin |
| 51 | | snfi 8038 |
. . . . . . 7
⊢ {2}
∈ Fin |
| 52 | | unfi 8227 |
. . . . . . 7
⊢
((((1...𝑁) ∖
ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈
Fin) |
| 53 | 50, 51, 52 | mp2an 708 |
. . . . . 6
⊢
(((1...𝑁) ∖
ℙ) ∪ {2}) ∈ Fin |
| 54 | 53 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈
Fin) |
| 55 | 12 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
Λ:ℕ⟶ℝ) |
| 56 | | difss 3737 |
. . . . . . . . . 10
⊢
((1...𝑁) ∖
ℙ) ⊆ (1...𝑁) |
| 57 | 56 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ (1...𝑁)) |
| 58 | | 2nn 11185 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 59 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℕ) |
| 60 | | hgt750lemb.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ≤ 𝑁) |
| 61 | | elfz1b 12409 |
. . . . . . . . . . . 12
⊢ (2 ∈
(1...𝑁) ↔ (2 ∈
ℕ ∧ 𝑁 ∈
ℕ ∧ 2 ≤ 𝑁)) |
| 62 | 61 | biimpri 218 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ ∧ 2 ≤ 𝑁) → 2 ∈ (1...𝑁)) |
| 63 | 59, 1, 60, 62 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → 2 ∈ (1...𝑁)) |
| 64 | 63 | snssd 4340 |
. . . . . . . . 9
⊢ (𝜑 → {2} ⊆ (1...𝑁)) |
| 65 | 57, 64 | unssd 3789 |
. . . . . . . 8
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆
(1...𝑁)) |
| 66 | | fz1ssnn 12372 |
. . . . . . . . 9
⊢
(1...𝑁) ⊆
ℕ |
| 67 | 66 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
| 68 | 65, 67 | sstrd 3613 |
. . . . . . 7
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆
ℕ) |
| 69 | 68 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈
ℕ) |
| 70 | 55, 69 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
(Λ‘𝑖) ∈
ℝ) |
| 71 | 54, 70 | fsumrecl 14465 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
∈ ℝ) |
| 72 | | fzfid 12772 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 73 | 12 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) →
Λ:ℕ⟶ℝ) |
| 74 | 67 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ) |
| 75 | 73, 74 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ) |
| 76 | 72, 75 | fsumrecl 14465 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ) |
| 77 | 71, 76 | remulcld 10070 |
. . 3
⊢ (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) ∈ ℝ) |
| 78 | 44, 77 | remulcld 10070 |
. 2
⊢ (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) ∈ ℝ) |
| 79 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑁 ∈ ℕ) |
| 80 | 79 | nnrpd 11870 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 𝑁 ∈
ℝ+) |
| 81 | | relogcl 24322 |
. . . . . . 7
⊢ (𝑁 ∈ ℝ+
→ (log‘𝑁) ∈
ℝ) |
| 82 | 80, 81 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘𝑁) ∈ ℝ) |
| 83 | 33, 82 | remulcld 10070 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘1)) ·
(log‘𝑁)) ∈
ℝ) |
| 84 | 27, 83 | remulcld 10070 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (log‘𝑁))) ∈
ℝ) |
| 85 | | vmage0 24847 |
. . . . . 6
⊢ ((𝑛‘0) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘0))) |
| 86 | 26, 85 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 0 ≤ (Λ‘(𝑛‘0))) |
| 87 | | vmage0 24847 |
. . . . . . 7
⊢ ((𝑛‘1) ∈ ℕ →
0 ≤ (Λ‘(𝑛‘1))) |
| 88 | 32, 87 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 0 ≤ (Λ‘(𝑛‘1))) |
| 89 | 38 | nnrpd 11870 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈
ℝ+) |
| 90 | 89 | relogcld 24369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘(𝑛‘2)) ∈ ℝ) |
| 91 | | vmalelog 24930 |
. . . . . . . 8
⊢ ((𝑛‘2) ∈ ℕ →
(Λ‘(𝑛‘2)) ≤ (log‘(𝑛‘2))) |
| 92 | 38, 91 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘2)) ≤ (log‘(𝑛‘2))) |
| 93 | 14, 16, 17, 19, 37 | reprle 30692 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ≤ 𝑁) |
| 94 | | logleb 24349 |
. . . . . . . . 9
⊢ (((𝑛‘2) ∈
ℝ+ ∧ 𝑁
∈ ℝ+) → ((𝑛‘2) ≤ 𝑁 ↔ (log‘(𝑛‘2)) ≤ (log‘𝑁))) |
| 95 | 94 | biimpa 501 |
. . . . . . . 8
⊢ ((((𝑛‘2) ∈
ℝ+ ∧ 𝑁
∈ ℝ+) ∧ (𝑛‘2) ≤ 𝑁) → (log‘(𝑛‘2)) ≤ (log‘𝑁)) |
| 96 | 89, 80, 93, 95 | syl21anc 1325 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘(𝑛‘2)) ≤ (log‘𝑁)) |
| 97 | 39, 90, 82, 92, 96 | letrd 10194 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘2)) ≤ (log‘𝑁)) |
| 98 | 39, 82, 33, 88, 97 | lemul2ad 10964 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2))) ≤ ((Λ‘(𝑛‘1)) ·
(log‘𝑁))) |
| 99 | 40, 83, 27, 86, 98 | lemul2ad 10964 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤
((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁)))) |
| 100 | 11, 41, 84, 99 | fsumle 14531 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ≤ Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁)))) |
| 101 | 1 | nncnd 11036 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 102 | 1 | nnne0d 11065 |
. . . . . 6
⊢ (𝜑 → 𝑁 ≠ 0) |
| 103 | 101, 102 | logcld 24317 |
. . . . 5
⊢ (𝜑 → (log‘𝑁) ∈
ℂ) |
| 104 | 45 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) ∈ ℂ) |
| 105 | 11, 103, 104 | fsummulc2 14516 |
. . . 4
⊢ (𝜑 → ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) = Σ𝑛 ∈ 𝐴 ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))))) |
| 106 | 103 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (log‘𝑁) ∈ ℂ) |
| 107 | 106, 104 | mulcomd 10061 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1)))) = (((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) · (log‘𝑁))) |
| 108 | 27 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘0)) ∈ ℂ) |
| 109 | 33 | recnd 10068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (Λ‘(𝑛‘1)) ∈ ℂ) |
| 110 | 108, 109,
106 | mulassd 10063 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))) · (log‘𝑁)) = ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (log‘𝑁)))) |
| 111 | 107, 110 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1)))) = ((Λ‘(𝑛‘0)) ·
((Λ‘(𝑛‘1)) · (log‘𝑁)))) |
| 112 | 111 | sumeq2dv 14433 |
. . . 4
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((log‘𝑁) · ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1)))) = Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁)))) |
| 113 | 105, 112 | eqtr2d 2657 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(log‘𝑁))) =
((log‘𝑁) ·
Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) ·
(Λ‘(𝑛‘1))))) |
| 114 | 100, 113 | breqtrd 4679 |
. 2
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))))) |
| 115 | 1 | nnred 11035 |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 116 | 1 | nnge1d 11063 |
. . . 4
⊢ (𝜑 → 1 ≤ 𝑁) |
| 117 | 115, 116 | logge0d 24376 |
. . 3
⊢ (𝜑 → 0 ≤ (log‘𝑁)) |
| 118 | | xpfi 8231 |
. . . . . 6
⊢
(((((1...𝑁) ∖
ℙ) ∪ {2}) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) ∈
Fin) |
| 119 | 54, 72, 118 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁)) ∈
Fin) |
| 120 | 12 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
Λ:ℕ⟶ℝ) |
| 121 | 68 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(((1...𝑁) ∖ ℙ)
∪ {2}) ⊆ ℕ) |
| 122 | | xp1st 7198 |
. . . . . . . . 9
⊢ (𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) →
(1st ‘𝑢)
∈ (((1...𝑁) ∖
ℙ) ∪ {2})) |
| 123 | 122 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(1st ‘𝑢)
∈ (((1...𝑁) ∖
ℙ) ∪ {2})) |
| 124 | 121, 123 | sseldd 3604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(1st ‘𝑢)
∈ ℕ) |
| 125 | 120, 124 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(Λ‘(1st ‘𝑢)) ∈ ℝ) |
| 126 | | xp2nd 7199 |
. . . . . . . . 9
⊢ (𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) →
(2nd ‘𝑢)
∈ (1...𝑁)) |
| 127 | 126 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(2nd ‘𝑢)
∈ (1...𝑁)) |
| 128 | 66, 127 | sseldi 3601 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(2nd ‘𝑢)
∈ ℕ) |
| 129 | 120, 128 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
(Λ‘(2nd ‘𝑢)) ∈ ℝ) |
| 130 | 125, 129 | remulcld 10070 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) ∈
ℝ) |
| 131 | | vmage0 24847 |
. . . . . . 7
⊢
((1st ‘𝑢) ∈ ℕ → 0 ≤
(Λ‘(1st ‘𝑢))) |
| 132 | 124, 131 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) → 0 ≤
(Λ‘(1st ‘𝑢))) |
| 133 | | vmage0 24847 |
. . . . . . 7
⊢
((2nd ‘𝑢) ∈ ℕ → 0 ≤
(Λ‘(2nd ‘𝑢))) |
| 134 | 128, 133 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) → 0 ≤
(Λ‘(2nd ‘𝑢))) |
| 135 | 125, 129,
132, 134 | mulge0d 10604 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) → 0 ≤
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢)))) |
| 136 | 5 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ℕ ⊆
ℕ) |
| 137 | 15 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑁 ∈ ℤ) |
| 138 | 3 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 3 ∈
ℕ0) |
| 139 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ 𝐴) |
| 140 | 9, 139 | sseldi 3601 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐 ∈ (ℕ(repr‘3)𝑁)) |
| 141 | 136, 137,
138, 140 | reprf 30690 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑐:(0..^3)⟶ℕ) |
| 142 | 24 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 0 ∈ (0..^3)) |
| 143 | 141, 142 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ ℕ) |
| 144 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 𝑁 ∈ ℕ) |
| 145 | 136, 137,
138, 140, 142 | reprle 30692 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ≤ 𝑁) |
| 146 | | elfz1b 12409 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘0) ∈ (1...𝑁) ↔ ((𝑐‘0) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘0) ≤ 𝑁)) |
| 147 | 146 | biimpri 218 |
. . . . . . . . . . . 12
⊢ (((𝑐‘0) ∈ ℕ ∧
𝑁 ∈ ℕ ∧
(𝑐‘0) ≤ 𝑁) → (𝑐‘0) ∈ (1...𝑁)) |
| 148 | 143, 144,
145, 147 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ (1...𝑁)) |
| 149 | 8 | rabeq2i 3197 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝐴 ↔ (𝑐 ∈ (ℕ(repr‘3)𝑁) ∧ ¬ (𝑐‘0) ∈ (𝑂 ∩
ℙ))) |
| 150 | 149 | simprbi 480 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ 𝐴 → ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)) |
| 151 | | hgt750leme.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} |
| 152 | 151 | oddprm2 30733 |
. . . . . . . . . . . . . 14
⊢ (ℙ
∖ {2}) = (𝑂 ∩
ℙ) |
| 153 | 152 | eleq2i 2693 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘0) ∈ (ℙ
∖ {2}) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ)) |
| 154 | 150, 153 | sylnibr 319 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝐴 → ¬ (𝑐‘0) ∈ (ℙ ∖
{2})) |
| 155 | 139, 154 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ¬ (𝑐‘0) ∈ (ℙ ∖
{2})) |
| 156 | 148, 155 | jca 554 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑐‘0) ∈ (1...𝑁) ∧ ¬ (𝑐‘0) ∈ (ℙ ∖
{2}))) |
| 157 | | eldif 3584 |
. . . . . . . . . 10
⊢ ((𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖ {2}))
↔ ((𝑐‘0) ∈
(1...𝑁) ∧ ¬ (𝑐‘0) ∈ (ℙ
∖ {2}))) |
| 158 | 156, 157 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖
{2}))) |
| 159 | | uncom 3757 |
. . . . . . . . . . . . 13
⊢
(((1...𝑁) ∖
ℙ) ∪ {2}) = ({2} ∪ ((1...𝑁) ∖ ℙ)) |
| 160 | | undif3 3888 |
. . . . . . . . . . . . 13
⊢ ({2}
∪ ((1...𝑁) ∖
ℙ)) = (({2} ∪ (1...𝑁)) ∖ (ℙ ∖
{2})) |
| 161 | 159, 160 | eqtri 2644 |
. . . . . . . . . . . 12
⊢
(((1...𝑁) ∖
ℙ) ∪ {2}) = (({2} ∪ (1...𝑁)) ∖ (ℙ ∖
{2})) |
| 162 | | ssequn1 3783 |
. . . . . . . . . . . . . 14
⊢ ({2}
⊆ (1...𝑁) ↔ ({2}
∪ (1...𝑁)) = (1...𝑁)) |
| 163 | 64, 162 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ({2} ∪ (1...𝑁)) = (1...𝑁)) |
| 164 | 163 | difeq1d 3727 |
. . . . . . . . . . . 12
⊢ (𝜑 → (({2} ∪ (1...𝑁)) ∖ (ℙ ∖
{2})) = ((1...𝑁) ∖
(ℙ ∖ {2}))) |
| 165 | 161, 164 | syl5eq 2668 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) = ((1...𝑁) ∖ (ℙ ∖
{2}))) |
| 166 | 165 | eleq2d 2687 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ↔ (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖
{2})))) |
| 167 | 166 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ↔ (𝑐‘0) ∈ ((1...𝑁) ∖ (ℙ ∖
{2})))) |
| 168 | 158, 167 | mpbird 247 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ (((1...𝑁) ∖ ℙ) ∪
{2})) |
| 169 | 30 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 1 ∈ (0..^3)) |
| 170 | 141, 169 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ ℕ) |
| 171 | 136, 137,
138, 140, 169 | reprle 30692 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ≤ 𝑁) |
| 172 | | elfz1b 12409 |
. . . . . . . . . 10
⊢ ((𝑐‘1) ∈ (1...𝑁) ↔ ((𝑐‘1) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝑐‘1) ≤ 𝑁)) |
| 173 | 172 | biimpri 218 |
. . . . . . . . 9
⊢ (((𝑐‘1) ∈ ℕ ∧
𝑁 ∈ ℕ ∧
(𝑐‘1) ≤ 𝑁) → (𝑐‘1) ∈ (1...𝑁)) |
| 174 | 170, 144,
171, 173 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ (1...𝑁)) |
| 175 | 168, 174 | opelxpd 5149 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 〈(𝑐‘0), (𝑐‘1)〉 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
| 176 | 175 | ralrimiva 2966 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
| 177 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0)) |
| 178 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑑 = 𝑐 → (𝑑‘1) = (𝑐‘1)) |
| 179 | 177, 178 | opeq12d 4410 |
. . . . . . . 8
⊢ (𝑑 = 𝑐 → 〈(𝑑‘0), (𝑑‘1)〉 = 〈(𝑐‘0), (𝑐‘1)〉) |
| 180 | 179 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = (𝑐 ∈ 𝐴 ↦ 〈(𝑐‘0), (𝑐‘1)〉) |
| 181 | 180 | rnmptss 6392 |
. . . . . 6
⊢
(∀𝑐 ∈
𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁)) → ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ⊆ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
| 182 | 176, 181 | syl 17 |
. . . . 5
⊢ (𝜑 → ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ⊆ ((((1...𝑁) ∖ ℙ) ∪ {2})
× (1...𝑁))) |
| 183 | 119, 130,
135, 182 | fsumless 14528 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢))) ≤ Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))((Λ‘(1st ‘𝑢)) ·
(Λ‘(2nd ‘𝑢)))) |
| 184 | | fvex 6201 |
. . . . . . . 8
⊢ (𝑛‘0) ∈
V |
| 185 | | fvex 6201 |
. . . . . . . 8
⊢ (𝑛‘1) ∈
V |
| 186 | 184, 185 | op1std 7178 |
. . . . . . 7
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 → (1st
‘𝑢) = (𝑛‘0)) |
| 187 | 186 | fveq2d 6195 |
. . . . . 6
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 →
(Λ‘(1st ‘𝑢)) = (Λ‘(𝑛‘0))) |
| 188 | 184, 185 | op2ndd 7179 |
. . . . . . 7
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 → (2nd
‘𝑢) = (𝑛‘1)) |
| 189 | 188 | fveq2d 6195 |
. . . . . 6
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 →
(Λ‘(2nd ‘𝑢)) = (Λ‘(𝑛‘1))) |
| 190 | 187, 189 | oveq12d 6668 |
. . . . 5
⊢ (𝑢 = 〈(𝑛‘0), (𝑛‘1)〉 →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) =
((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) |
| 191 | | opex 4932 |
. . . . . . . 8
⊢
〈(𝑐‘0),
(𝑐‘1)〉 ∈
V |
| 192 | 191 | rgenw 2924 |
. . . . . . 7
⊢
∀𝑐 ∈
𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ V |
| 193 | 180 | fnmpt 6020 |
. . . . . . 7
⊢
(∀𝑐 ∈
𝐴 〈(𝑐‘0), (𝑐‘1)〉 ∈ V → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴) |
| 194 | 192, 193 | mp1i 13 |
. . . . . 6
⊢ (𝜑 → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴) |
| 195 | | eqidd 2623 |
. . . . . 6
⊢ (𝜑 → ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) |
| 196 | 141 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑐:(0..^3)⟶ℕ) |
| 197 | 196 | ffnd 6046 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑐 Fn (0..^3)) |
| 198 | 20 | ad4ant13 1292 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑛:(0..^3)⟶ℕ) |
| 199 | 198 | ffnd 6046 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑛 Fn (0..^3)) |
| 200 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) |
| 201 | 180 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = (𝑐 ∈ 𝐴 ↦ 〈(𝑐‘0), (𝑐‘1)〉)) |
| 202 | 191 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 〈(𝑐‘0), (𝑐‘1)〉 ∈ V) |
| 203 | 201, 202 | fvmpt2d 6293 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = 〈(𝑐‘0), (𝑐‘1)〉) |
| 204 | 203 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = 〈(𝑐‘0), (𝑐‘1)〉) |
| 205 | 204 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = 〈(𝑐‘0), (𝑐‘1)〉) |
| 206 | 180 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = (𝑐 ∈ 𝐴 ↦ 〈(𝑐‘0), (𝑐‘1)〉)) |
| 207 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑛 → (𝑐‘0) = (𝑛‘0)) |
| 208 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐 = 𝑛 → (𝑐‘1) = (𝑛‘1)) |
| 209 | 207, 208 | opeq12d 4410 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 = 𝑛 → 〈(𝑐‘0), (𝑐‘1)〉 = 〈(𝑛‘0), (𝑛‘1)〉) |
| 210 | 209 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐴) ∧ 𝑐 = 𝑛) → 〈(𝑐‘0), (𝑐‘1)〉 = 〈(𝑛‘0), (𝑛‘1)〉) |
| 211 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈(𝑛‘0),
(𝑛‘1)〉 ∈
V |
| 212 | 211 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → 〈(𝑛‘0), (𝑛‘1)〉 ∈ V) |
| 213 | 206, 210,
18, 212 | fvmptd 6288 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) = 〈(𝑛‘0), (𝑛‘1)〉) |
| 214 | 213 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) = 〈(𝑛‘0), (𝑛‘1)〉) |
| 215 | 214 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) = 〈(𝑛‘0), (𝑛‘1)〉) |
| 216 | 200, 205,
215 | 3eqtr3d 2664 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 〈(𝑐‘0), (𝑐‘1)〉 = 〈(𝑛‘0), (𝑛‘1)〉) |
| 217 | 184, 185 | opth2 4949 |
. . . . . . . . . . . . . . 15
⊢
(〈(𝑐‘0),
(𝑐‘1)〉 =
〈(𝑛‘0), (𝑛‘1)〉 ↔ ((𝑐‘0) = (𝑛‘0) ∧ (𝑐‘1) = (𝑛‘1))) |
| 218 | 216, 217 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → ((𝑐‘0) = (𝑛‘0) ∧ (𝑐‘1) = (𝑛‘1))) |
| 219 | 218 | simpld 475 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → (𝑐‘0) = (𝑛‘0)) |
| 220 | 219 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘0) = (𝑛‘0)) |
| 221 | | simpr 477 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → 𝑖 = 0) |
| 222 | 221 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘𝑖) = (𝑐‘0)) |
| 223 | 221 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑛‘𝑖) = (𝑛‘0)) |
| 224 | 220, 222,
223 | 3eqtr4d 2666 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 0) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
| 225 | 218 | simprd 479 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → (𝑐‘1) = (𝑛‘1)) |
| 226 | 225 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘1) = (𝑛‘1)) |
| 227 | | simpr 477 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → 𝑖 = 1) |
| 228 | 227 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘𝑖) = (𝑐‘1)) |
| 229 | 227 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑛‘𝑖) = (𝑛‘1)) |
| 230 | 226, 228,
229 | 3eqtr4d 2666 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 1) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
| 231 | 219 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘0) = (𝑛‘0)) |
| 232 | 225 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘1) = (𝑛‘1)) |
| 233 | 231, 232 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) + (𝑐‘1)) = ((𝑛‘0) + (𝑛‘1))) |
| 234 | 233 | oveq2d 6666 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑁 − ((𝑐‘0) + (𝑐‘1))) = (𝑁 − ((𝑛‘0) + (𝑛‘1)))) |
| 235 | 23 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (0..^3) = {0, 1,
2}) |
| 236 | 235 | sumeq1d 14431 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑐‘𝑗) = Σ𝑗 ∈ {0, 1, 2} (𝑐‘𝑗)) |
| 237 | 5 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ℕ ⊆
ℕ) |
| 238 | 137 | ad4antr 768 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑁 ∈ ℤ) |
| 239 | 3 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 3 ∈
ℕ0) |
| 240 | 140 | ad4antr 768 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑐 ∈ (ℕ(repr‘3)𝑁)) |
| 241 | 237, 238,
239, 240 | reprsum 30691 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑐‘𝑗) = 𝑁) |
| 242 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑐‘𝑗) = (𝑐‘0)) |
| 243 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → (𝑐‘𝑗) = (𝑐‘1)) |
| 244 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 2 → (𝑐‘𝑗) = (𝑐‘2)) |
| 245 | 143 | nncnd 11036 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘0) ∈ ℂ) |
| 246 | 245 | ad4antr 768 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘0) ∈ ℂ) |
| 247 | 170 | nncnd 11036 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘1) ∈ ℂ) |
| 248 | 247 | ad4antr 768 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘1) ∈ ℂ) |
| 249 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → 2 ∈ (0..^3)) |
| 250 | 141, 249 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘2) ∈ ℕ) |
| 251 | 250 | nncnd 11036 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐴) → (𝑐‘2) ∈ ℂ) |
| 252 | 251 | ad4antr 768 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) ∈ ℂ) |
| 253 | 246, 248,
252 | 3jca 1242 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) ∈ ℂ ∧ (𝑐‘1) ∈ ℂ ∧
(𝑐‘2) ∈
ℂ)) |
| 254 | 21, 28, 34 | 3pm3.2i 1239 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
V ∧ 1 ∈ V ∧ 2 ∈ V) |
| 255 | 254 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (0 ∈ V ∧ 1 ∈ V
∧ 2 ∈ V)) |
| 256 | | 0ne1 11088 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
1 |
| 257 | 256 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 0 ≠ 1) |
| 258 | | 0ne2 11239 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≠
2 |
| 259 | 258 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 0 ≠ 2) |
| 260 | | 1ne2 11240 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≠
2 |
| 261 | 260 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 1 ≠ 2) |
| 262 | 242, 243,
244, 253, 255, 257, 259, 261 | sumtp 14478 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ {0, 1, 2} (𝑐‘𝑗) = (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2))) |
| 263 | 236, 241,
262 | 3eqtr3rd 2665 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)) = 𝑁) |
| 264 | 246, 248 | addcld 10059 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑐‘0) + (𝑐‘1)) ∈ ℂ) |
| 265 | 101 | ad5antr 770 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑁 ∈ ℂ) |
| 266 | 264, 252,
265 | addrsub 10448 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((((𝑐‘0) + (𝑐‘1)) + (𝑐‘2)) = 𝑁 ↔ (𝑐‘2) = (𝑁 − ((𝑐‘0) + (𝑐‘1))))) |
| 267 | 263, 266 | mpbid 222 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) = (𝑁 − ((𝑐‘0) + (𝑐‘1)))) |
| 268 | 235 | sumeq1d 14431 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑛‘𝑗) = Σ𝑗 ∈ {0, 1, 2} (𝑛‘𝑗)) |
| 269 | 19 | ad4ant13 1292 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
| 270 | 269 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑛 ∈ (ℕ(repr‘3)𝑁)) |
| 271 | 237, 238,
239, 270 | reprsum 30691 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ (0..^3)(𝑛‘𝑗) = 𝑁) |
| 272 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 0 → (𝑛‘𝑗) = (𝑛‘0)) |
| 273 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 1 → (𝑛‘𝑗) = (𝑛‘1)) |
| 274 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 2 → (𝑛‘𝑗) = (𝑛‘2)) |
| 275 | 26 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℂ) |
| 276 | 275 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (𝑛‘0) ∈ ℂ) |
| 277 | 276 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘0) ∈ ℂ) |
| 278 | 32 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℂ) |
| 279 | 278 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (𝑛‘1) ∈ ℂ) |
| 280 | 279 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘1) ∈ ℂ) |
| 281 | 38 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℂ) |
| 282 | 281 | adantlr 751 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (𝑛‘2) ∈ ℂ) |
| 283 | 282 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘2) ∈ ℂ) |
| 284 | 277, 280,
283 | 3jca 1242 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑛‘0) ∈ ℂ ∧ (𝑛‘1) ∈ ℂ ∧
(𝑛‘2) ∈
ℂ)) |
| 285 | 272, 273,
274, 284, 255, 257, 259, 261 | sumtp 14478 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → Σ𝑗 ∈ {0, 1, 2} (𝑛‘𝑗) = (((𝑛‘0) + (𝑛‘1)) + (𝑛‘2))) |
| 286 | 268, 271,
285 | 3eqtr3rd 2665 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)) = 𝑁) |
| 287 | 277, 280 | addcld 10059 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((𝑛‘0) + (𝑛‘1)) ∈ ℂ) |
| 288 | 287, 283,
265 | addrsub 10448 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → ((((𝑛‘0) + (𝑛‘1)) + (𝑛‘2)) = 𝑁 ↔ (𝑛‘2) = (𝑁 − ((𝑛‘0) + (𝑛‘1))))) |
| 289 | 286, 288 | mpbid 222 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘2) = (𝑁 − ((𝑛‘0) + (𝑛‘1)))) |
| 290 | 234, 267,
289 | 3eqtr4d 2666 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘2) = (𝑛‘2)) |
| 291 | | simpr 477 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → 𝑖 = 2) |
| 292 | 291 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘𝑖) = (𝑐‘2)) |
| 293 | 291 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑛‘𝑖) = (𝑛‘2)) |
| 294 | 290, 292,
293 | 3eqtr4d 2666 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) ∧ 𝑖 = 2) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
| 295 | | simpr 477 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → 𝑖 ∈ (0..^3)) |
| 296 | 295, 23 | syl6eleq 2711 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → 𝑖 ∈ {0, 1, 2}) |
| 297 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑖 ∈ V |
| 298 | 297 | eltp 4230 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ {0, 1, 2} ↔ (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
| 299 | 296, 298 | sylib 208 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → (𝑖 = 0 ∨ 𝑖 = 1 ∨ 𝑖 = 2)) |
| 300 | 224, 230,
294, 299 | mpjao3dan 1395 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) ∧ 𝑖 ∈ (0..^3)) → (𝑐‘𝑖) = (𝑛‘𝑖)) |
| 301 | 197, 199,
300 | eqfnfvd 6314 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) ∧ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛)) → 𝑐 = 𝑛) |
| 302 | 301 | ex 450 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐴) ∧ 𝑛 ∈ 𝐴) → (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) |
| 303 | 302 | anasss 679 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐴 ∧ 𝑛 ∈ 𝐴)) → (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) |
| 304 | 303 | ralrimivva 2971 |
. . . . . 6
⊢ (𝜑 → ∀𝑐 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) |
| 305 | | dff1o6 6531 |
. . . . . . 7
⊢ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉):𝐴–1-1-onto→ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ↔ ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴 ∧ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ∧ ∀𝑐 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛))) |
| 306 | 305 | biimpri 218 |
. . . . . 6
⊢ (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) Fn 𝐴 ∧ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) = ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉) ∧ ∀𝑐 ∈ 𝐴 ∀𝑛 ∈ 𝐴 (((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑐) = ((𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)‘𝑛) → 𝑐 = 𝑛)) → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉):𝐴–1-1-onto→ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) |
| 307 | 194, 195,
304, 306 | syl3anc 1326 |
. . . . 5
⊢ (𝜑 → (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉):𝐴–1-1-onto→ran
(𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) |
| 308 | 182 | sselda 3603 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) → 𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))) |
| 309 | 308, 125 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
(Λ‘(1st ‘𝑢)) ∈ ℝ) |
| 310 | 308, 129 | syldan 487 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
(Λ‘(2nd ‘𝑢)) ∈ ℝ) |
| 311 | 309, 310 | remulcld 10070 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) ∈
ℝ) |
| 312 | 311 | recnd 10068 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)) →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) ∈
ℂ) |
| 313 | 190, 11, 307, 213, 312 | fsumf1o 14454 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ ran (𝑑 ∈ 𝐴 ↦ 〈(𝑑‘0), (𝑑‘1)〉)((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢))) = Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) |
| 314 | 76 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℂ) |
| 315 | 70 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
(Λ‘𝑖) ∈
ℂ) |
| 316 | 54, 314, 315 | fsummulc1 14517 |
. . . . 5
⊢ (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) = Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})((Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) |
| 317 | 48 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
(1...𝑁) ∈
Fin) |
| 318 | 75 | adantrl 752 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → (Λ‘𝑗) ∈
ℝ) |
| 319 | 318 | anassrs 680 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ) |
| 320 | 319 | recnd 10068 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) ∧ 𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℂ) |
| 321 | 317, 315,
320 | fsummulc2 14516 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) →
((Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) = Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗))) |
| 322 | 321 | sumeq2dv 14433 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})((Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)) = Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗))) |
| 323 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑗 ∈ V |
| 324 | 297, 323 | op1std 7178 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (1st ‘𝑢) = 𝑖) |
| 325 | 324 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (Λ‘(1st
‘𝑢)) =
(Λ‘𝑖)) |
| 326 | 297, 323 | op2ndd 7179 |
. . . . . . . 8
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (2nd ‘𝑢) = 𝑗) |
| 327 | 326 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (Λ‘(2nd
‘𝑢)) =
(Λ‘𝑗)) |
| 328 | 325, 327 | oveq12d 6668 |
. . . . . 6
⊢ (𝑢 = 〈𝑖, 𝑗〉 →
((Λ‘(1st ‘𝑢)) · (Λ‘(2nd
‘𝑢))) =
((Λ‘𝑖)
· (Λ‘𝑗))) |
| 329 | 70 | adantrr 753 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → (Λ‘𝑖) ∈
ℝ) |
| 330 | 329, 318 | remulcld 10070 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → ((Λ‘𝑖) · (Λ‘𝑗)) ∈
ℝ) |
| 331 | 330 | recnd 10068 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2}) ∧ 𝑗 ∈ (1...𝑁))) → ((Λ‘𝑖) · (Λ‘𝑗)) ∈
ℂ) |
| 332 | 328, 54, 72, 331 | fsumxp 14503 |
. . . . 5
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})Σ𝑗 ∈ (1...𝑁)((Λ‘𝑖) · (Λ‘𝑗)) = Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢)))) |
| 333 | 316, 322,
332 | 3eqtrrd 2661 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ ((((1...𝑁) ∖ ℙ) ∪ {2}) ×
(1...𝑁))((Λ‘(1st
‘𝑢)) ·
(Λ‘(2nd ‘𝑢))) = (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) |
| 334 | 183, 313,
333 | 3brtr3d 4684 |
. . 3
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1))) ≤ (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗))) |
| 335 | 46, 77, 44, 117, 334 | lemul2ad 10964 |
. 2
⊢ (𝜑 → ((log‘𝑁) · Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · (Λ‘(𝑛‘1)))) ≤
((log‘𝑁) ·
(Σ𝑖 ∈
(((1...𝑁) ∖ ℙ)
∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) |
| 336 | 42, 47, 78, 114, 335 | letrd 10194 |
1
⊢ (𝜑 → Σ𝑛 ∈ 𝐴 ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) ·
(Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖)
· Σ𝑗 ∈
(1...𝑁)(Λ‘𝑗)))) |