Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgt750leme Structured version   Visualization version   GIF version

Theorem hgt750leme 30736
Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of [Helfgott] p. 69. (Contributed by Thierry Arnoux, 29-Dec-2021.)
Hypotheses
Ref Expression
hgt750leme.o 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
hgt750leme.n (𝜑𝑁 ∈ ℕ)
hgt750leme.0 (𝜑 → (10↑27) ≤ 𝑁)
hgt750leme.h (𝜑𝐻:ℕ⟶(0[,)+∞))
hgt750leme.k (𝜑𝐾:ℕ⟶(0[,)+∞))
hgt750leme.1 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
hgt750leme.2 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
Assertion
Ref Expression
hgt750leme (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Distinct variable groups:   𝑧,𝑂   𝑚,𝐻   𝑚,𝐾   𝑚,𝑁,𝑛   𝑚,𝑂,𝑛,𝑧   𝜑,𝑚,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐻(𝑧,𝑛)   𝐾(𝑧,𝑛)   𝑁(𝑧)

Proof of Theorem hgt750leme
Dummy variables 𝑎 𝑐 𝑑 𝑒 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hgt750leme.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
21nnnn0d 11351 . . . . 5 (𝜑𝑁 ∈ ℕ0)
3 3nn0 11310 . . . . . 6 3 ∈ ℕ0
43a1i 11 . . . . 5 (𝜑 → 3 ∈ ℕ0)
5 ssid 3624 . . . . . 6 ℕ ⊆ ℕ
65a1i 11 . . . . 5 (𝜑 → ℕ ⊆ ℕ)
72, 4, 6reprfi2 30701 . . . 4 (𝜑 → (ℕ(repr‘3)𝑁) ∈ Fin)
8 diffi 8192 . . . 4 ((ℕ(repr‘3)𝑁) ∈ Fin → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
97, 8syl 17 . . 3 (𝜑 → ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)) ∈ Fin)
10 vmaf 24845 . . . . . . 7 Λ:ℕ⟶ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → Λ:ℕ⟶ℝ)
125a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ℕ ⊆ ℕ)
131nnzd 11481 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
1413adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑁 ∈ ℤ)
153a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 3 ∈ ℕ0)
16 simpr 477 . . . . . . . . 9 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁)))
1716eldifad 3586 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
1812, 14, 15, 17reprf 30690 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝑛:(0..^3)⟶ℕ)
19 c0ex 10034 . . . . . . . . . 10 0 ∈ V
2019tpid1 4303 . . . . . . . . 9 0 ∈ {0, 1, 2}
21 fzo0to3tp 12554 . . . . . . . . 9 (0..^3) = {0, 1, 2}
2220, 21eleqtrri 2700 . . . . . . . 8 0 ∈ (0..^3)
2322a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 0 ∈ (0..^3))
2418, 23ffvelrnd 6360 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘0) ∈ ℕ)
2511, 24ffvelrnd 6360 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘0)) ∈ ℝ)
26 rge0ssre 12280 . . . . . 6 (0[,)+∞) ⊆ ℝ
27 hgt750leme.h . . . . . . . 8 (𝜑𝐻:ℕ⟶(0[,)+∞))
2827adantr 481 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐻:ℕ⟶(0[,)+∞))
2928, 24ffvelrnd 6360 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ (0[,)+∞))
3026, 29sseldi 3601 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐻‘(𝑛‘0)) ∈ ℝ)
3125, 30remulcld 10070 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) ∈ ℝ)
32 1ex 10035 . . . . . . . . . . 11 1 ∈ V
3332tpid2 4304 . . . . . . . . . 10 1 ∈ {0, 1, 2}
3433, 21eleqtrri 2700 . . . . . . . . 9 1 ∈ (0..^3)
3534a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 1 ∈ (0..^3))
3618, 35ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘1) ∈ ℕ)
3711, 36ffvelrnd 6360 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘1)) ∈ ℝ)
38 hgt750leme.k . . . . . . . . 9 (𝜑𝐾:ℕ⟶(0[,)+∞))
3938adantr 481 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 𝐾:ℕ⟶(0[,)+∞))
4039, 36ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ (0[,)+∞))
4126, 40sseldi 3601 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘1)) ∈ ℝ)
4237, 41remulcld 10070 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) ∈ ℝ)
43 2ex 11092 . . . . . . . . . . 11 2 ∈ V
4443tpid3 4307 . . . . . . . . . 10 2 ∈ {0, 1, 2}
4544, 21eleqtrri 2700 . . . . . . . . 9 2 ∈ (0..^3)
4645a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → 2 ∈ (0..^3))
4718, 46ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝑛‘2) ∈ ℕ)
4811, 47ffvelrnd 6360 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (Λ‘(𝑛‘2)) ∈ ℝ)
4939, 47ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ (0[,)+∞))
5026, 49sseldi 3601 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (𝐾‘(𝑛‘2)) ∈ ℝ)
5148, 50remulcld 10070 . . . . 5 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))) ∈ ℝ)
5242, 51remulcld 10070 . . . 4 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2)))) ∈ ℝ)
5331, 52remulcld 10070 . . 3 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → (((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
549, 53fsumrecl 14465 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ∈ ℝ)
55 3re 11094 . . . 4 3 ∈ ℝ
5655a1i 11 . . 3 (𝜑 → 3 ∈ ℝ)
57 1nn0 11308 . . . . . . . . 9 1 ∈ ℕ0
58 0nn0 11307 . . . . . . . . . 10 0 ∈ ℕ0
59 7nn0 11314 . . . . . . . . . . 11 7 ∈ ℕ0
60 9nn0 11316 . . . . . . . . . . . 12 9 ∈ ℕ0
61 5nn0 11312 . . . . . . . . . . . . . 14 5 ∈ ℕ0
62 5nn 11188 . . . . . . . . . . . . . . 15 5 ∈ ℕ
63 nnrp 11842 . . . . . . . . . . . . . . 15 (5 ∈ ℕ → 5 ∈ ℝ+)
6462, 63ax-mp 5 . . . . . . . . . . . . . 14 5 ∈ ℝ+
6561, 64rpdp2cl 29589 . . . . . . . . . . . . 13 55 ∈ ℝ+
6660, 65rpdp2cl 29589 . . . . . . . . . . . 12 955 ∈ ℝ+
6760, 66rpdp2cl 29589 . . . . . . . . . . 11 9955 ∈ ℝ+
6859, 67rpdp2cl 29589 . . . . . . . . . 10 79955 ∈ ℝ+
6958, 68rpdp2cl 29589 . . . . . . . . 9 079955 ∈ ℝ+
7057, 69rpdpcl 29611 . . . . . . . 8 (1.079955) ∈ ℝ+
7170a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ+)
7271rpred 11872 . . . . . 6 (𝜑 → (1.079955) ∈ ℝ)
7372resqcld 13035 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℝ)
74 4nn0 11311 . . . . . . . . 9 4 ∈ ℕ0
75 4nn 11187 . . . . . . . . . . 11 4 ∈ ℕ
76 nnrp 11842 . . . . . . . . . . 11 (4 ∈ ℕ → 4 ∈ ℝ+)
7775, 76ax-mp 5 . . . . . . . . . 10 4 ∈ ℝ+
7857, 77rpdp2cl 29589 . . . . . . . . 9 14 ∈ ℝ+
7974, 78rpdp2cl 29589 . . . . . . . 8 414 ∈ ℝ+
8057, 79rpdpcl 29611 . . . . . . 7 (1.414) ∈ ℝ+
8180a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ+)
8281rpred 11872 . . . . 5 (𝜑 → (1.414) ∈ ℝ)
8373, 82remulcld 10070 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
84 fveq1 6190 . . . . . . . . . 10 (𝑑 = 𝑐 → (𝑑‘0) = (𝑐‘0))
8584eleq1d 2686 . . . . . . . . 9 (𝑑 = 𝑐 → ((𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8685notbid 308 . . . . . . . 8 (𝑑 = 𝑐 → (¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ) ↔ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)))
8786cbvrabv 3199 . . . . . . 7 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} = {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐‘0) ∈ (𝑂 ∩ ℙ)}
8887ssrab3 3688 . . . . . 6 {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)
89 ssfi 8180 . . . . . 6 (((ℕ(repr‘3)𝑁) ∈ Fin ∧ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁)) → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
907, 88, 89sylancl 694 . . . . 5 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ∈ Fin)
9110a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → Λ:ℕ⟶ℝ)
925a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ℕ ⊆ ℕ)
9313adantr 481 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑁 ∈ ℤ)
943a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 3 ∈ ℕ0)
9588a1i 11 . . . . . . . . . 10 (𝜑 → {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ⊆ (ℕ(repr‘3)𝑁))
9695sselda 3603 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛 ∈ (ℕ(repr‘3)𝑁))
9792, 93, 94, 96reprf 30690 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 𝑛:(0..^3)⟶ℕ)
9822a1i 11 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 0 ∈ (0..^3))
9997, 98ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘0) ∈ ℕ)
10091, 99ffvelrnd 6360 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘0)) ∈ ℝ)
10134a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 1 ∈ (0..^3))
10297, 101ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘1) ∈ ℕ)
10391, 102ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘1)) ∈ ℝ)
10445a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → 2 ∈ (0..^3))
10597, 104ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (𝑛‘2) ∈ ℕ)
10691, 105ffvelrnd 6360 . . . . . . 7 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → (Λ‘(𝑛‘2)) ∈ ℝ)
107103, 106remulcld 10070 . . . . . 6 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
108100, 107remulcld 10070 . . . . 5 ((𝜑𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)}) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
10990, 108fsumrecl 14465 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
11083, 109remulcld 10070 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
11156, 110remulcld 10070 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
112 4re 11097 . . . . . . . . . 10 4 ∈ ℝ
113 8re 11105 . . . . . . . . . 10 8 ∈ ℝ
114112, 113pm3.2i 471 . . . . . . . . 9 (4 ∈ ℝ ∧ 8 ∈ ℝ)
115 dp2cl 29587 . . . . . . . . 9 ((4 ∈ ℝ ∧ 8 ∈ ℝ) → 48 ∈ ℝ)
116114, 115ax-mp 5 . . . . . . . 8 48 ∈ ℝ
11755, 116pm3.2i 471 . . . . . . 7 (3 ∈ ℝ ∧ 48 ∈ ℝ)
118 dp2cl 29587 . . . . . . 7 ((3 ∈ ℝ ∧ 48 ∈ ℝ) → 348 ∈ ℝ)
119117, 118ax-mp 5 . . . . . 6 348 ∈ ℝ
120 dpcl 29598 . . . . . 6 ((7 ∈ ℕ0348 ∈ ℝ) → (7.348) ∈ ℝ)
12159, 119, 120mp2an 708 . . . . 5 (7.348) ∈ ℝ
122121a1i 11 . . . 4 (𝜑 → (7.348) ∈ ℝ)
1231nnrpd 11870 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
124123relogcld 24369 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
1251nnred 11035 . . . . . 6 (𝜑𝑁 ∈ ℝ)
126123rpge0d 11876 . . . . . 6 (𝜑 → 0 ≤ 𝑁)
127125, 126resqrtcld 14156 . . . . 5 (𝜑 → (√‘𝑁) ∈ ℝ)
128123rpsqrtcld 14150 . . . . . 6 (𝜑 → (√‘𝑁) ∈ ℝ+)
129128rpne0d 11877 . . . . 5 (𝜑 → (√‘𝑁) ≠ 0)
130124, 127, 129redivcld 10853 . . . 4 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ)
131122, 130remulcld 10070 . . 3 (𝜑 → ((7.348) · ((log‘𝑁) / (√‘𝑁))) ∈ ℝ)
132125resqcld 13035 . . 3 (𝜑 → (𝑁↑2) ∈ ℝ)
133131, 132remulcld 10070 . 2 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) ∈ ℝ)
134 0re 10040 . . . . . . . . . . 11 0 ∈ ℝ
135 7re 11103 . . . . . . . . . . . . 13 7 ∈ ℝ
136 9re 11107 . . . . . . . . . . . . . . 15 9 ∈ ℝ
137 5re 11099 . . . . . . . . . . . . . . . . . . 19 5 ∈ ℝ
138137, 137pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (5 ∈ ℝ ∧ 5 ∈ ℝ)
139 dp2cl 29587 . . . . . . . . . . . . . . . . . 18 ((5 ∈ ℝ ∧ 5 ∈ ℝ) → 55 ∈ ℝ)
140138, 139ax-mp 5 . . . . . . . . . . . . . . . . 17 55 ∈ ℝ
141136, 140pm3.2i 471 . . . . . . . . . . . . . . . 16 (9 ∈ ℝ ∧ 55 ∈ ℝ)
142 dp2cl 29587 . . . . . . . . . . . . . . . 16 ((9 ∈ ℝ ∧ 55 ∈ ℝ) → 955 ∈ ℝ)
143141, 142ax-mp 5 . . . . . . . . . . . . . . 15 955 ∈ ℝ
144136, 143pm3.2i 471 . . . . . . . . . . . . . 14 (9 ∈ ℝ ∧ 955 ∈ ℝ)
145 dp2cl 29587 . . . . . . . . . . . . . 14 ((9 ∈ ℝ ∧ 955 ∈ ℝ) → 9955 ∈ ℝ)
146144, 145ax-mp 5 . . . . . . . . . . . . 13 9955 ∈ ℝ
147135, 146pm3.2i 471 . . . . . . . . . . . 12 (7 ∈ ℝ ∧ 9955 ∈ ℝ)
148 dp2cl 29587 . . . . . . . . . . . 12 ((7 ∈ ℝ ∧ 9955 ∈ ℝ) → 79955 ∈ ℝ)
149147, 148ax-mp 5 . . . . . . . . . . 11 79955 ∈ ℝ
150134, 149pm3.2i 471 . . . . . . . . . 10 (0 ∈ ℝ ∧ 79955 ∈ ℝ)
151 dp2cl 29587 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 79955 ∈ ℝ) → 079955 ∈ ℝ)
152150, 151ax-mp 5 . . . . . . . . 9 079955 ∈ ℝ
153 dpcl 29598 . . . . . . . . 9 ((1 ∈ ℕ0079955 ∈ ℝ) → (1.079955) ∈ ℝ)
15457, 152, 153mp2an 708 . . . . . . . 8 (1.079955) ∈ ℝ
155154a1i 11 . . . . . . 7 (𝜑 → (1.079955) ∈ ℝ)
156155resqcld 13035 . . . . . 6 (𝜑 → ((1.079955)↑2) ∈ ℝ)
157 1re 10039 . . . . . . . . . . . 12 1 ∈ ℝ
158157, 112pm3.2i 471 . . . . . . . . . . 11 (1 ∈ ℝ ∧ 4 ∈ ℝ)
159 dp2cl 29587 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 4 ∈ ℝ) → 14 ∈ ℝ)
160158, 159ax-mp 5 . . . . . . . . . 10 14 ∈ ℝ
161112, 160pm3.2i 471 . . . . . . . . 9 (4 ∈ ℝ ∧ 14 ∈ ℝ)
162 dp2cl 29587 . . . . . . . . 9 ((4 ∈ ℝ ∧ 14 ∈ ℝ) → 414 ∈ ℝ)
163161, 162ax-mp 5 . . . . . . . 8 414 ∈ ℝ
164 dpcl 29598 . . . . . . . 8 ((1 ∈ ℕ0414 ∈ ℝ) → (1.414) ∈ ℝ)
16557, 163, 164mp2an 708 . . . . . . 7 (1.414) ∈ ℝ
166165a1i 11 . . . . . 6 (𝜑 → (1.414) ∈ ℝ)
167156, 166remulcld 10070 . . . . 5 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ)
16837, 48remulcld 10070 . . . . . . 7 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))) ∈ ℝ)
16925, 168remulcld 10070 . . . . . 6 ((𝜑𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))) → ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
1709, 169fsumrecl 14465 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℝ)
171167, 170remulcld 10070 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
17256, 109remulcld 10070 . . . . 5 (𝜑 → (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ∈ ℝ)
173167, 172remulcld 10070 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ∈ ℝ)
174 hgt750leme.1 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐾𝑚) ≤ (1.079955))
175 hgt750leme.2 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ≤ (1.414))
1769, 155, 166, 27, 38, 24, 36, 47, 174, 175hgt750lemf 30731 . . . 4 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
177 hgt750leme.o . . . . . 6 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}
178 2re 11090 . . . . . . . 8 2 ∈ ℝ
179178a1i 11 . . . . . . 7 (𝜑 → 2 ∈ ℝ)
180 10nn0 11516 . . . . . . . . . 10 10 ∈ ℕ0
181 2nn0 11309 . . . . . . . . . . 11 2 ∈ ℕ0
182181, 59deccl 11512 . . . . . . . . . 10 27 ∈ ℕ0
183180, 182nn0expcli 12886 . . . . . . . . 9 (10↑27) ∈ ℕ0
184183nn0rei 11303 . . . . . . . 8 (10↑27) ∈ ℝ
185184a1i 11 . . . . . . 7 (𝜑 → (10↑27) ∈ ℝ)
186180numexp1 15781 . . . . . . . . . 10 (10↑1) = 10
187180nn0rei 11303 . . . . . . . . . 10 10 ∈ ℝ
188186, 187eqeltri 2697 . . . . . . . . 9 (10↑1) ∈ ℝ
189188a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ∈ ℝ)
190 1nn 11031 . . . . . . . . . . 11 1 ∈ ℕ
191 2lt9 11228 . . . . . . . . . . . 12 2 < 9
192178, 136, 191ltleii 10160 . . . . . . . . . . 11 2 ≤ 9
193190, 58, 181, 192declei 11542 . . . . . . . . . 10 2 ≤ 10
194193, 186breqtrri 4680 . . . . . . . . 9 2 ≤ (10↑1)
195194a1i 11 . . . . . . . 8 (𝜑 → 2 ≤ (10↑1))
196 1z 11407 . . . . . . . . . . . 12 1 ∈ ℤ
197182nn0zi 11402 . . . . . . . . . . . 12 27 ∈ ℤ
198187, 196, 1973pm3.2i 1239 . . . . . . . . . . 11 (10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ)
199 1lt10 11681 . . . . . . . . . . 11 1 < 10
200198, 199pm3.2i 471 . . . . . . . . . 10 ((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10)
201 2nn 11185 . . . . . . . . . . 11 2 ∈ ℕ
202 1lt9 11229 . . . . . . . . . . . 12 1 < 9
203157, 136, 202ltleii 10160 . . . . . . . . . . 11 1 ≤ 9
204201, 59, 57, 203declei 11542 . . . . . . . . . 10 1 ≤ 27
205 leexp2 12915 . . . . . . . . . . 11 (((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) → (1 ≤ 27 ↔ (10↑1) ≤ (10↑27)))
206205biimpa 501 . . . . . . . . . 10 ((((10 ∈ ℝ ∧ 1 ∈ ℤ ∧ 27 ∈ ℤ) ∧ 1 < 10) ∧ 1 ≤ 27) → (10↑1) ≤ (10↑27))
207200, 204, 206mp2an 708 . . . . . . . . 9 (10↑1) ≤ (10↑27)
208207a1i 11 . . . . . . . 8 (𝜑 → (10↑1) ≤ (10↑27))
209179, 189, 185, 195, 208letrd 10194 . . . . . . 7 (𝜑 → 2 ≤ (10↑27))
210 hgt750leme.0 . . . . . . 7 (𝜑 → (10↑27) ≤ 𝑁)
211179, 185, 125, 209, 210letrd 10194 . . . . . 6 (𝜑 → 2 ≤ 𝑁)
212 eqid 2622 . . . . . 6 (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0})))) = (𝑒 ∈ {𝑐 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑐𝑎) ∈ (𝑂 ∩ ℙ)} ↦ (𝑒 ∘ if(𝑎 = 0, ( I ↾ (0..^3)), ((pmTrsp‘(0..^3))‘{𝑎, 0}))))
213177, 1, 211, 87, 212hgt750lema 30735 . . . . 5 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))
214 2z 11409 . . . . . . . . 9 2 ∈ ℤ
215214a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℤ)
21671, 215rpexpcld 13032 . . . . . . 7 (𝜑 → ((1.079955)↑2) ∈ ℝ+)
217216, 81rpmulcld 11888 . . . . . 6 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℝ+)
218170, 172, 217lemul2d 11916 . . . . 5 (𝜑 → (Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))))))
219213, 218mpbid 222 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
22054, 171, 173, 176, 219letrd 10194 . . 3 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
221155recnd 10068 . . . . . 6 (𝜑 → (1.079955) ∈ ℂ)
222221sqcld 13006 . . . . 5 (𝜑 → ((1.079955)↑2) ∈ ℂ)
223166recnd 10068 . . . . 5 (𝜑 → (1.414) ∈ ℂ)
224222, 223mulcld 10060 . . . 4 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
225 3cn 11095 . . . . 5 3 ∈ ℂ
226225a1i 11 . . . 4 (𝜑 → 3 ∈ ℂ)
227109recnd 10068 . . . 4 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ∈ ℂ)
228224, 226, 227mul12d 10245 . . 3 (𝜑 → ((((1.079955)↑2) · (1.414)) · (3 · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) = (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
229220, 228breqtrd 4679 . 2 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))))
230 fzfi 12771 . . . . . . . . . . 11 (1...𝑁) ∈ Fin
231 diffi 8192 . . . . . . . . . . 11 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ ℙ) ∈ Fin)
232230, 231ax-mp 5 . . . . . . . . . 10 ((1...𝑁) ∖ ℙ) ∈ Fin
233 snfi 8038 . . . . . . . . . 10 {2} ∈ Fin
234 unfi 8227 . . . . . . . . . 10 ((((1...𝑁) ∖ ℙ) ∈ Fin ∧ {2} ∈ Fin) → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
235232, 233, 234mp2an 708 . . . . . . . . 9 (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin
236235a1i 11 . . . . . . . 8 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ∈ Fin)
23710a1i 11 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → Λ:ℕ⟶ℝ)
238 fz1ssnn 12372 . . . . . . . . . . . . 13 (1...𝑁) ⊆ ℕ
239238a1i 11 . . . . . . . . . . . 12 (𝜑 → (1...𝑁) ⊆ ℕ)
240239ssdifssd 3748 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ ℙ) ⊆ ℕ)
241201a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
242241snssd 4340 . . . . . . . . . . 11 (𝜑 → {2} ⊆ ℕ)
243240, 242unssd 3789 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ ℙ) ∪ {2}) ⊆ ℕ)
244243sselda 3603 . . . . . . . . 9 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 𝑖 ∈ ℕ)
245237, 244ffvelrnd 6360 . . . . . . . 8 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → (Λ‘𝑖) ∈ ℝ)
246236, 245fsumrecl 14465 . . . . . . 7 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) ∈ ℝ)
247 chpvalz 30706 . . . . . . . . 9 (𝑁 ∈ ℤ → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
24813, 247syl 17 . . . . . . . 8 (𝜑 → (ψ‘𝑁) = Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
249 chpf 24849 . . . . . . . . . 10 ψ:ℝ⟶ℝ
250249a1i 11 . . . . . . . . 9 (𝜑 → ψ:ℝ⟶ℝ)
251250, 125ffvelrnd 6360 . . . . . . . 8 (𝜑 → (ψ‘𝑁) ∈ ℝ)
252248, 251eqeltrrd 2702 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) ∈ ℝ)
253246, 252remulcld 10070 . . . . . 6 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ∈ ℝ)
254124, 253remulcld 10070 . . . . 5 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ∈ ℝ)
25583, 254remulcld 10070 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ∈ ℝ)
25656, 255remulcld 10070 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ∈ ℝ)
257177, 1, 211, 87hgt750lemb 30734 . . . . 5 (𝜑 → Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))
258109, 254, 217lemul2d 11916 . . . . 5 (𝜑 → (Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))) ≤ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ↔ ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
259257, 258mpbid 222 . . . 4 (𝜑 → ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))
260 3rp 11838 . . . . . 6 3 ∈ ℝ+
261260a1i 11 . . . . 5 (𝜑 → 3 ∈ ℝ+)
262110, 255, 261lemul2d 11916 . . . 4 (𝜑 → (((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2))))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))))))
263259, 262mpbid 222 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))))
264 6re 11101 . . . . . . . . . . . . . . . . 17 6 ∈ ℝ
265264, 55pm3.2i 471 . . . . . . . . . . . . . . . 16 (6 ∈ ℝ ∧ 3 ∈ ℝ)
266 dp2cl 29587 . . . . . . . . . . . . . . . 16 ((6 ∈ ℝ ∧ 3 ∈ ℝ) → 63 ∈ ℝ)
267265, 266ax-mp 5 . . . . . . . . . . . . . . 15 63 ∈ ℝ
268178, 267pm3.2i 471 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 63 ∈ ℝ)
269 dp2cl 29587 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ 63 ∈ ℝ) → 263 ∈ ℝ)
270268, 269ax-mp 5 . . . . . . . . . . . . 13 263 ∈ ℝ
271112, 270pm3.2i 471 . . . . . . . . . . . 12 (4 ∈ ℝ ∧ 263 ∈ ℝ)
272 dp2cl 29587 . . . . . . . . . . . 12 ((4 ∈ ℝ ∧ 263 ∈ ℝ) → 4263 ∈ ℝ)
273271, 272ax-mp 5 . . . . . . . . . . 11 4263 ∈ ℝ
274 dpcl 29598 . . . . . . . . . . 11 ((1 ∈ ℕ04263 ∈ ℝ) → (1.4263) ∈ ℝ)
27557, 273, 274mp2an 708 . . . . . . . . . 10 (1.4263) ∈ ℝ
276275a1i 11 . . . . . . . . 9 (𝜑 → (1.4263) ∈ ℝ)
277276, 127remulcld 10070 . . . . . . . 8 (𝜑 → ((1.4263) · (√‘𝑁)) ∈ ℝ)
278113, 55pm3.2i 471 . . . . . . . . . . . . . . . . . 18 (8 ∈ ℝ ∧ 3 ∈ ℝ)
279 dp2cl 29587 . . . . . . . . . . . . . . . . . 18 ((8 ∈ ℝ ∧ 3 ∈ ℝ) → 83 ∈ ℝ)
280278, 279ax-mp 5 . . . . . . . . . . . . . . . . 17 83 ∈ ℝ
281113, 280pm3.2i 471 . . . . . . . . . . . . . . . 16 (8 ∈ ℝ ∧ 83 ∈ ℝ)
282 dp2cl 29587 . . . . . . . . . . . . . . . 16 ((8 ∈ ℝ ∧ 83 ∈ ℝ) → 883 ∈ ℝ)
283281, 282ax-mp 5 . . . . . . . . . . . . . . 15 883 ∈ ℝ
28455, 283pm3.2i 471 . . . . . . . . . . . . . 14 (3 ∈ ℝ ∧ 883 ∈ ℝ)
285 dp2cl 29587 . . . . . . . . . . . . . 14 ((3 ∈ ℝ ∧ 883 ∈ ℝ) → 3883 ∈ ℝ)
286284, 285ax-mp 5 . . . . . . . . . . . . 13 3883 ∈ ℝ
287134, 286pm3.2i 471 . . . . . . . . . . . 12 (0 ∈ ℝ ∧ 3883 ∈ ℝ)
288 dp2cl 29587 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 3883 ∈ ℝ) → 03883 ∈ ℝ)
289287, 288ax-mp 5 . . . . . . . . . . 11 03883 ∈ ℝ
290 dpcl 29598 . . . . . . . . . . 11 ((1 ∈ ℕ003883 ∈ ℝ) → (1.03883) ∈ ℝ)
29157, 289, 290mp2an 708 . . . . . . . . . 10 (1.03883) ∈ ℝ
292291a1i 11 . . . . . . . . 9 (𝜑 → (1.03883) ∈ ℝ)
293292, 125remulcld 10070 . . . . . . . 8 (𝜑 → ((1.03883) · 𝑁) ∈ ℝ)
294277, 293remulcld 10070 . . . . . . 7 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ∈ ℝ)
295124, 294remulcld 10070 . . . . . 6 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ∈ ℝ)
29683, 295remulcld 10070 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ∈ ℝ)
29756, 296remulcld 10070 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ∈ ℝ)
298 vmage0 24847 . . . . . . . . . . 11 (𝑖 ∈ ℕ → 0 ≤ (Λ‘𝑖))
299244, 298syl 17 . . . . . . . . . 10 ((𝜑𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})) → 0 ≤ (Λ‘𝑖))
300236, 245, 299fsumge0 14527 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖))
3011, 210hgt750lemd 30726 . . . . . . . . 9 (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) < ((1.4263) · (√‘𝑁)))
302 fzfid 12772 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
30310a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → Λ:ℕ⟶ℝ)
304239sselda 3603 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (1...𝑁)) → 𝑗 ∈ ℕ)
305303, 304ffvelrnd 6360 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → (Λ‘𝑗) ∈ ℝ)
306 vmage0 24847 . . . . . . . . . . 11 (𝑗 ∈ ℕ → 0 ≤ (Λ‘𝑗))
307304, 306syl 17 . . . . . . . . . 10 ((𝜑𝑗 ∈ (1...𝑁)) → 0 ≤ (Λ‘𝑗))
308302, 305, 307fsumge0 14527 . . . . . . . . 9 (𝜑 → 0 ≤ Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))
3091hgt750lemc 30725 . . . . . . . . 9 (𝜑 → Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗) < ((1.03883) · 𝑁))
310246, 277, 252, 293, 300, 301, 308, 309ltmul12ad 10965 . . . . . . . 8 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) < (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
311253, 294, 310ltled 10185 . . . . . . 7 (𝜑 → (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))
312157a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
313 1lt2 11194 . . . . . . . . . . 11 1 < 2
314313a1i 11 . . . . . . . . . 10 (𝜑 → 1 < 2)
315312, 179, 125, 314, 211ltletrd 10197 . . . . . . . . 9 (𝜑 → 1 < 𝑁)
316125, 315rplogcld 24375 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ+)
317253, 294, 316lemul2d 11916 . . . . . . 7 (𝜑 → ((Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)) ≤ (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) ↔ ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
318311, 317mpbid 222 . . . . . 6 (𝜑 → ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))
319254, 295, 217lemul2d 11916 . . . . . 6 (𝜑 → (((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))) ≤ ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) ↔ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
320318, 319mpbid 222 . . . . 5 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))
321255, 296, 261lemul2d 11916 . . . . 5 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗)))) ≤ ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) ↔ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))))))
322320, 321mpbid 222 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))))
323154resqcli 12949 . . . . . . . . . 10 ((1.079955)↑2) ∈ ℝ
324323, 165remulcli 10054 . . . . . . . . 9 (((1.079955)↑2) · (1.414)) ∈ ℝ
325275, 291remulcli 10054 . . . . . . . . 9 ((1.4263) · (1.03883)) ∈ ℝ
326324, 325remulcli 10054 . . . . . . . 8 ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℝ
32755, 326remulcli 10054 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ
328 hgt750lem2 30730 . . . . . . 7 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) < (7.348)
329327, 121, 328ltleii 10160 . . . . . 6 (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348)
330327a1i 11 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ∈ ℝ)
331316, 128rpdivcld 11889 . . . . . . . 8 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℝ+)
332123, 215rpexpcld 13032 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℝ+)
333331, 332rpmulcld 11888 . . . . . . 7 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) ∈ ℝ+)
334330, 122, 333lemul1d 11915 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) ≤ (7.348) ↔ ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))))
335329, 334mpbii 223 . . . . 5 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))) ≤ ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
336276recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (1.4263) ∈ ℂ)
337127recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (√‘𝑁) ∈ ℂ)
338292recnd 10068 . . . . . . . . . . . . . 14 (𝜑 → (1.03883) ∈ ℂ)
339125recnd 10068 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℂ)
340336, 337, 338, 339mul4d 10248 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)) = (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)))
341340oveq2d 6666 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))))
342124recnd 10068 . . . . . . . . . . . . 13 (𝜑 → (log‘𝑁) ∈ ℂ)
343336, 338mulcld 10060 . . . . . . . . . . . . . 14 (𝜑 → ((1.4263) · (1.03883)) ∈ ℂ)
344337, 339mulcld 10060 . . . . . . . . . . . . . 14 (𝜑 → ((√‘𝑁) · 𝑁) ∈ ℂ)
345343, 344mulcld 10060 . . . . . . . . . . . . 13 (𝜑 → (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) ∈ ℂ)
346342, 345mulcomd 10061 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑁) · (((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
347341, 346eqtrd 2656 . . . . . . . . . . 11 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)))
348343, 344, 342mulassd 10063 . . . . . . . . . . 11 (𝜑 → ((((1.4263) · (1.03883)) · ((√‘𝑁) · 𝑁)) · (log‘𝑁)) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
349347, 348eqtrd 2656 . . . . . . . . . 10 (𝜑 → ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))) = (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
350349oveq2d 6666 . . . . . . . . 9 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35183recnd 10068 . . . . . . . . . 10 (𝜑 → (((1.079955)↑2) · (1.414)) ∈ ℂ)
352344, 342mulcld 10060 . . . . . . . . . 10 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) ∈ ℂ)
353351, 343, 352mulassd 10063 . . . . . . . . 9 (𝜑 → (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((((1.079955)↑2) · (1.414)) · (((1.4263) · (1.03883)) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
354350, 353eqtr4d 2659 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁)))) = (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
355354oveq2d 6666 . . . . . . 7 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
35656recnd 10068 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
357351, 343mulcld 10060 . . . . . . . 8 (𝜑 → ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) ∈ ℂ)
358356, 357, 352mulassd 10063 . . . . . . 7 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = (3 · (((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883))) · (((√‘𝑁) · 𝑁) · (log‘𝑁)))))
359355, 358eqtr4d 2659 . . . . . 6 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))))
360132recnd 10068 . . . . . . . . 9 (𝜑 → (𝑁↑2) ∈ ℂ)
361342, 337, 360, 129div32d 10824 . . . . . . . 8 (𝜑 → (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)) = ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))))
362360, 337, 129divcld 10801 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) ∈ ℂ)
363342, 362mulcomd 10061 . . . . . . . 8 (𝜑 → ((log‘𝑁) · ((𝑁↑2) / (√‘𝑁))) = (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)))
364339sqvald 13005 . . . . . . . . . . . 12 (𝜑 → (𝑁↑2) = (𝑁 · 𝑁))
365364oveq1d 6665 . . . . . . . . . . 11 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((𝑁 · 𝑁) / (√‘𝑁)))
366339, 339, 337, 129divassd 10836 . . . . . . . . . . 11 (𝜑 → ((𝑁 · 𝑁) / (√‘𝑁)) = (𝑁 · (𝑁 / (√‘𝑁))))
367 divsqrtid 30672 . . . . . . . . . . . . 13 (𝑁 ∈ ℝ+ → (𝑁 / (√‘𝑁)) = (√‘𝑁))
368123, 367syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑁 / (√‘𝑁)) = (√‘𝑁))
369368oveq2d 6666 . . . . . . . . . . 11 (𝜑 → (𝑁 · (𝑁 / (√‘𝑁))) = (𝑁 · (√‘𝑁)))
370365, 366, 3693eqtrd 2660 . . . . . . . . . 10 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = (𝑁 · (√‘𝑁)))
371339, 337mulcomd 10061 . . . . . . . . . 10 (𝜑 → (𝑁 · (√‘𝑁)) = ((√‘𝑁) · 𝑁))
372370, 371eqtrd 2656 . . . . . . . . 9 (𝜑 → ((𝑁↑2) / (√‘𝑁)) = ((√‘𝑁) · 𝑁))
373372oveq1d 6665 . . . . . . . 8 (𝜑 → (((𝑁↑2) / (√‘𝑁)) · (log‘𝑁)) = (((√‘𝑁) · 𝑁) · (log‘𝑁)))
374361, 363, 3733eqtrrd 2661 . . . . . . 7 (𝜑 → (((√‘𝑁) · 𝑁) · (log‘𝑁)) = (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2)))
375374oveq2d 6666 . . . . . 6 (𝜑 → ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((√‘𝑁) · 𝑁) · (log‘𝑁))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
376359, 375eqtrd 2656 . . . . 5 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) = ((3 · ((((1.079955)↑2) · (1.414)) · ((1.4263) · (1.03883)))) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
377122recnd 10068 . . . . . 6 (𝜑 → (7.348) ∈ ℂ)
378130recnd 10068 . . . . . 6 (𝜑 → ((log‘𝑁) / (√‘𝑁)) ∈ ℂ)
379377, 378, 360mulassd 10063 . . . . 5 (𝜑 → (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)) = ((7.348) · (((log‘𝑁) / (√‘𝑁)) · (𝑁↑2))))
380335, 376, 3793brtr4d 4685 . . . 4 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (((1.4263) · (√‘𝑁)) · ((1.03883) · 𝑁))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
381256, 297, 133, 322, 380letrd 10194 . . 3 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · ((log‘𝑁) · (Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪ {2})(Λ‘𝑖) · Σ𝑗 ∈ (1...𝑁)(Λ‘𝑗))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
382111, 256, 133, 263, 381letrd 10194 . 2 (𝜑 → (3 · ((((1.079955)↑2) · (1.414)) · Σ𝑛 ∈ {𝑑 ∈ (ℕ(repr‘3)𝑁) ∣ ¬ (𝑑‘0) ∈ (𝑂 ∩ ℙ)} ((Λ‘(𝑛‘0)) · ((Λ‘(𝑛‘1)) · (Λ‘(𝑛‘2)))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
38354, 111, 133, 229, 382letrd 10194 1 (𝜑 → Σ𝑛 ∈ ((ℕ(repr‘3)𝑁) ∖ ((𝑂 ∩ ℙ)(repr‘3)𝑁))(((Λ‘(𝑛‘0)) · (𝐻‘(𝑛‘0))) · (((Λ‘(𝑛‘1)) · (𝐾‘(𝑛‘1))) · ((Λ‘(𝑛‘2)) · (𝐾‘(𝑛‘2))))) ≤ (((7.348) · ((log‘𝑁) / (√‘𝑁))) · (𝑁↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  cdif 3571  cun 3572  cin 3573  wss 3574  ifcif 4086  {csn 4177  {cpr 4179  {ctp 4181   class class class wbr 4653  cmpt 4729   I cid 5023  cres 5116  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  7c7 11075  8c8 11076  9c9 11077  0cn0 11292  cz 11377  cdc 11493  +crp 11832  [,)cico 12177  ...cfz 12326  ..^cfzo 12465  cexp 12860  csqrt 13973  Σcsu 14416  cdvds 14983  cprime 15385  pmTrspcpmtr 17861  logclog 24301  Λcvma 24818  ψcchp 24819  cdp2 29577  .cdp 29595  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-ros335 30723  ax-ros336 30724
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-r1 8627  df-rank 8628  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-pmtr 17862  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-ulm 24131  df-log 24303  df-atan 24594  df-cht 24823  df-vma 24824  df-chp 24825  df-dp2 29578  df-dp 29596  df-repr 30687
This theorem is referenced by:  tgoldbachgtde  30738
  Copyright terms: Public domain W3C validator