Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrel3 Structured version   Visualization version   GIF version

Theorem ssrel3 34067
Description: Subclass relation in another form when the subclass is a relation. (Contributed by Peter Mazsa, 16-Feb-2019.)
Assertion
Ref Expression
ssrel3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem ssrel3
StepHypRef Expression
1 ssrel 5207 . 2 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2 df-br 4654 . . . 4 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
3 df-br 4654 . . . 4 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
42, 3imbi12i 340 . . 3 ((𝑥𝐴𝑦𝑥𝐵𝑦) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
542albii 1748 . 2 (∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))
61, 5syl6bbr 278 1 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(𝑥𝐴𝑦𝑥𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wcel 1990  wss 3574  cop 4183   class class class wbr 4653  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by:  eqrel2  34068  inxpss  34082  inxpss2  34085
  Copyright terms: Public domain W3C validator