MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2 Structured version   Visualization version   GIF version

Theorem strfv2 15906
Description: A variation on strfv 15907 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2.s 𝑆 ∈ V
strfv2.f Fun 𝑆
strfv2.e 𝐸 = Slot (𝐸‘ndx)
strfv2.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strfv2 (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strfv2
StepHypRef Expression
1 strfv2.e . 2 𝐸 = Slot (𝐸‘ndx)
2 strfv2.s . . 3 𝑆 ∈ V
32a1i 11 . 2 (𝐶𝑉𝑆 ∈ V)
4 strfv2.f . . 3 Fun 𝑆
54a1i 11 . 2 (𝐶𝑉 → Fun 𝑆)
6 strfv2.n . . 3 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
76a1i 11 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
8 id 22 . 2 (𝐶𝑉𝐶𝑉)
91, 3, 5, 7, 8strfv2d 15905 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  ccnv 5113  Fun wfun 5882  cfv 5888  ndxcnx 15854  Slot cslot 15856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861
This theorem is referenced by:  strfv  15907
  Copyright terms: Public domain W3C validator