![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfv2d | Structured version Visualization version GIF version |
Description: Deduction version of strfv 15907. (Contributed by Mario Carneiro, 30-Apr-2015.) |
Ref | Expression |
---|---|
strfv2d.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
strfv2d.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfv2d.f | ⊢ (𝜑 → Fun ◡◡𝑆) |
strfv2d.n | ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
strfv2d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
strfv2d | ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv2d.e | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | strfv2d.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | 1, 2 | strfvnd 15876 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
4 | cnvcnv2 5588 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ↾ V) | |
5 | 4 | fveq1i 6192 | . . . 4 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = ((𝑆 ↾ V)‘(𝐸‘ndx)) |
6 | fvex 6201 | . . . . 5 ⊢ (𝐸‘ndx) ∈ V | |
7 | fvres 6207 | . . . . 5 ⊢ ((𝐸‘ndx) ∈ V → ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx))) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ ((𝑆 ↾ V)‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
9 | 5, 8 | eqtri 2644 | . . 3 ⊢ (◡◡𝑆‘(𝐸‘ndx)) = (𝑆‘(𝐸‘ndx)) |
10 | strfv2d.f | . . . 4 ⊢ (𝜑 → Fun ◡◡𝑆) | |
11 | strfv2d.n | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) | |
12 | strfv2d.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
13 | elex 3212 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ V) |
15 | opelxpi 5148 | . . . . . . 7 ⊢ (((𝐸‘ndx) ∈ V ∧ 𝐶 ∈ V) → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) | |
16 | 6, 14, 15 | sylancr 695 | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (V × V)) |
17 | 11, 16 | elind 3798 | . . . . 5 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ (𝑆 ∩ (V × V))) |
18 | cnvcnv 5586 | . . . . 5 ⊢ ◡◡𝑆 = (𝑆 ∩ (V × V)) | |
19 | 17, 18 | syl6eleqr 2712 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆) |
20 | funopfv 6235 | . . . 4 ⊢ (Fun ◡◡𝑆 → (〈(𝐸‘ndx), 𝐶〉 ∈ ◡◡𝑆 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶)) | |
21 | 10, 19, 20 | sylc 65 | . . 3 ⊢ (𝜑 → (◡◡𝑆‘(𝐸‘ndx)) = 𝐶) |
22 | 9, 21 | syl5eqr 2670 | . 2 ⊢ (𝜑 → (𝑆‘(𝐸‘ndx)) = 𝐶) |
23 | 3, 22 | eqtr2d 2657 | 1 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 〈cop 4183 × cxp 5112 ◡ccnv 5113 ↾ cres 5116 Fun wfun 5882 ‘cfv 5888 ndxcnx 15854 Slot cslot 15856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-slot 15861 |
This theorem is referenced by: strfv2 15906 opelstrbas 15978 eengbas 25861 ebtwntg 25862 ecgrtg 25863 elntg 25864 edgfiedgval 25902 |
Copyright terms: Public domain | W3C validator |