MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvn Structured version   Visualization version   GIF version

Theorem strfvn 15879
Description: Value of a structure component extractor 𝐸. Normally, 𝐸 is a defined constant symbol such as Base (df-base 15863) and 𝑁 is a fixed integer such as 1. 𝑆 is a structure, i.e. a specific member of a class of structures such as Poset (df-poset 16946) where 𝑆 ∈ Poset.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strfv 15907. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.)

Hypotheses
Ref Expression
strfvn.f 𝑆 ∈ V
strfvn.c 𝐸 = Slot 𝑁
Assertion
Ref Expression
strfvn (𝐸𝑆) = (𝑆𝑁)

Proof of Theorem strfvn
StepHypRef Expression
1 strfvn.c . . 3 𝐸 = Slot 𝑁
2 strfvn.f . . . 4 𝑆 ∈ V
32a1i 11 . . 3 (⊤ → 𝑆 ∈ V)
41, 3strfvnd 15876 . 2 (⊤ → (𝐸𝑆) = (𝑆𝑁))
54trud 1493 1 (𝐸𝑆) = (𝑆𝑁)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wtru 1484  wcel 1990  Vcvv 3200  cfv 5888  Slot cslot 15856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-slot 15861
This theorem is referenced by:  ndxarg  15882  str0  15911  setsnid  15915  baseval  15918  ressbas  15930  resvsca  29830
  Copyright terms: Public domain W3C validator