![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strfvn | Structured version Visualization version GIF version |
Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 15863) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures such as Poset
(df-poset 16946) where
𝑆
∈ Poset.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strfv 15907. (Contributed by NM, 9-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strfvn.f | ⊢ 𝑆 ∈ V |
strfvn.c | ⊢ 𝐸 = Slot 𝑁 |
Ref | Expression |
---|---|
strfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
4 | 1, 3 | strfvnd 15876 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
5 | 4 | trud 1493 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 Vcvv 3200 ‘cfv 5888 Slot cslot 15856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-slot 15861 |
This theorem is referenced by: ndxarg 15882 str0 15911 setsnid 15915 baseval 15918 ressbas 15930 resvsca 29830 |
Copyright terms: Public domain | W3C validator |