![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2an2 | Structured version Visualization version GIF version |
Description: syl2an 494 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
Ref | Expression |
---|---|
syl2an2.1 | ⊢ (𝜑 → 𝜓) |
syl2an2.2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜃) |
syl2an2.3 | ⊢ ((𝜓 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
syl2an2 | ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an2.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl2an2.2 | . . 3 ⊢ ((𝜒 ∧ 𝜑) → 𝜃) | |
3 | syl2an2.3 | . . 3 ⊢ ((𝜓 ∧ 𝜃) → 𝜏) | |
4 | 1, 2, 3 | syl2an 494 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜑)) → 𝜏) |
5 | 4 | anabss7 862 | 1 ⊢ ((𝜒 ∧ 𝜑) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: elrab3t 3362 reusv2lem3 4871 fvmpt2d 6293 fmptco 6396 fseqdom 8849 hashimarn 13227 divalgmod 15129 lcmfunsnlem2 15353 lcmflefac 15361 cncongr2 15382 usgr1v 26148 cplgr2vpr 26329 vtxdg0e 26370 wlknewwlksn 26773 wwlksnextwrd 26792 wwlksnwwlksnon 26810 clwlkclwwlklem2a4 26898 esum2dlem 30154 fv1stcnv 31680 bj-restsnss 33036 bj-restsnss2 33037 k0004lem3 38447 |
Copyright terms: Public domain | W3C validator |