MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2an2 Structured version   Visualization version   GIF version

Theorem syl2an2 875
Description: syl2an 494 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.)
Hypotheses
Ref Expression
syl2an2.1 (𝜑𝜓)
syl2an2.2 ((𝜒𝜑) → 𝜃)
syl2an2.3 ((𝜓𝜃) → 𝜏)
Assertion
Ref Expression
syl2an2 ((𝜒𝜑) → 𝜏)

Proof of Theorem syl2an2
StepHypRef Expression
1 syl2an2.1 . . 3 (𝜑𝜓)
2 syl2an2.2 . . 3 ((𝜒𝜑) → 𝜃)
3 syl2an2.3 . . 3 ((𝜓𝜃) → 𝜏)
41, 2, 3syl2an 494 . 2 ((𝜑 ∧ (𝜒𝜑)) → 𝜏)
54anabss7 862 1 ((𝜒𝜑) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  elrab3t  3362  reusv2lem3  4871  fvmpt2d  6293  fmptco  6396  fseqdom  8849  hashimarn  13227  divalgmod  15129  lcmfunsnlem2  15353  lcmflefac  15361  cncongr2  15382  usgr1v  26148  cplgr2vpr  26329  vtxdg0e  26370  wlknewwlksn  26773  wwlksnextwrd  26792  wwlksnwwlksnon  26810  clwlkclwwlklem2a4  26898  esum2dlem  30154  fv1stcnv  31680  bj-restsnss  33036  bj-restsnss2  33037  k0004lem3  38447
  Copyright terms: Public domain W3C validator