MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlknewwlksn Structured version   Visualization version   GIF version

Theorem wlknewwlksn 26773
Description: If a walk in a pseudograph has length 𝑁, then the sequence of the vertices of the walk is a word representing the walk as word of length 𝑁. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
wlknewwlksn (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → (2nd𝑊) ∈ (𝑁 WWalksN 𝐺))

Proof of Theorem wlknewwlksn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkcpr 26524 . . . . . 6 (𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
2 wlkn0 26516 . . . . . 6 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (2nd𝑊) ≠ ∅)
31, 2sylbi 207 . . . . 5 (𝑊 ∈ (Walks‘𝐺) → (2nd𝑊) ≠ ∅)
43adantl 482 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (2nd𝑊) ≠ ∅)
5 eqid 2622 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
6 eqid 2622 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
7 eqid 2622 . . . . . . 7 (1st𝑊) = (1st𝑊)
8 eqid 2622 . . . . . . 7 (2nd𝑊) = (2nd𝑊)
95, 6, 7, 8wlkelwrd 26528 . . . . . 6 (𝑊 ∈ (Walks‘𝐺) → ((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)))
10 ffz0iswrd 13332 . . . . . . 7 ((2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
1110adantl 482 . . . . . 6 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
129, 11syl 17 . . . . 5 (𝑊 ∈ (Walks‘𝐺) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
1312adantl 482 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (2nd𝑊) ∈ Word (Vtx‘𝐺))
14 eqid 2622 . . . . . . 7 (Edg‘𝐺) = (Edg‘𝐺)
1514upgrwlkvtxedg 26541 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → ∀𝑖 ∈ (0..^(#‘(1st𝑊))){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
16 wlklenvm1 26517 . . . . . . . . 9 ((1st𝑊)(Walks‘𝐺)(2nd𝑊) → (#‘(1st𝑊)) = ((#‘(2nd𝑊)) − 1))
1716adantl 482 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → (#‘(1st𝑊)) = ((#‘(2nd𝑊)) − 1))
1817oveq2d 6666 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → (0..^(#‘(1st𝑊))) = (0..^((#‘(2nd𝑊)) − 1)))
1918raleqdv 3144 . . . . . 6 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → (∀𝑖 ∈ (0..^(#‘(1st𝑊))){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2015, 19mpbid 222 . . . . 5 ((𝐺 ∈ UPGraph ∧ (1st𝑊)(Walks‘𝐺)(2nd𝑊)) → ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
211, 20sylan2b 492 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
224, 13, 213jca 1242 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2322adantr 481 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
24 simpl 473 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁) → 𝑁 ∈ ℕ0)
25 oveq2 6658 . . . . . . . . . . . . 13 ((#‘(1st𝑊)) = 𝑁 → (0...(#‘(1st𝑊))) = (0...𝑁))
2625adantl 482 . . . . . . . . . . . 12 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (#‘(1st𝑊)) = 𝑁) → (0...(#‘(1st𝑊))) = (0...𝑁))
2726feq2d 6031 . . . . . . . . . . 11 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (#‘(1st𝑊)) = 𝑁) → ((2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺) ↔ (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
2827biimpd 219 . . . . . . . . . 10 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (#‘(1st𝑊)) = 𝑁) → ((2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺) → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
2928impancom 456 . . . . . . . . 9 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((#‘(1st𝑊)) = 𝑁 → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
3029adantld 483 . . . . . . . 8 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁) → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)))
3130imp 445 . . . . . . 7 ((((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺))
32 ffz0hash 13231 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (2nd𝑊):(0...𝑁)⟶(Vtx‘𝐺)) → (#‘(2nd𝑊)) = (𝑁 + 1))
3324, 31, 32syl2an2 875 . . . . . 6 ((((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → (#‘(2nd𝑊)) = (𝑁 + 1))
3433ex 450 . . . . 5 (((1st𝑊) ∈ Word dom (iEdg‘𝐺) ∧ (2nd𝑊):(0...(#‘(1st𝑊)))⟶(Vtx‘𝐺)) → ((𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁) → (#‘(2nd𝑊)) = (𝑁 + 1)))
359, 34syl 17 . . . 4 (𝑊 ∈ (Walks‘𝐺) → ((𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁) → (#‘(2nd𝑊)) = (𝑁 + 1)))
3635adantl 482 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → ((𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁) → (#‘(2nd𝑊)) = (𝑁 + 1)))
3736imp 445 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → (#‘(2nd𝑊)) = (𝑁 + 1))
3824adantl 482 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → 𝑁 ∈ ℕ0)
39 iswwlksn 26730 . . . 4 (𝑁 ∈ ℕ0 → ((2nd𝑊) ∈ (𝑁 WWalksN 𝐺) ↔ ((2nd𝑊) ∈ (WWalks‘𝐺) ∧ (#‘(2nd𝑊)) = (𝑁 + 1))))
405, 14iswwlks 26728 . . . . . 6 ((2nd𝑊) ∈ (WWalks‘𝐺) ↔ ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4140a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → ((2nd𝑊) ∈ (WWalks‘𝐺) ↔ ((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
4241anbi1d 741 . . . 4 (𝑁 ∈ ℕ0 → (((2nd𝑊) ∈ (WWalks‘𝐺) ∧ (#‘(2nd𝑊)) = (𝑁 + 1)) ↔ (((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘(2nd𝑊)) = (𝑁 + 1))))
4339, 42bitrd 268 . . 3 (𝑁 ∈ ℕ0 → ((2nd𝑊) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘(2nd𝑊)) = (𝑁 + 1))))
4438, 43syl 17 . 2 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → ((2nd𝑊) ∈ (𝑁 WWalksN 𝐺) ↔ (((2nd𝑊) ≠ ∅ ∧ (2nd𝑊) ∈ Word (Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^((#‘(2nd𝑊)) − 1)){((2nd𝑊)‘𝑖), ((2nd𝑊)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ∧ (#‘(2nd𝑊)) = (𝑁 + 1))))
4523, 37, 44mpbir2and 957 1 (((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) ∧ (𝑁 ∈ ℕ0 ∧ (#‘(1st𝑊)) = 𝑁)) → (2nd𝑊) ∈ (𝑁 WWalksN 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  c0 3915  {cpr 4179   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  0cn0 11292  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UPGraph cupgr 25975  Walkscwlks 26492  WWalkscwwlks 26717   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wlknwwlksnfun  26774  wlkwwlkfun  26781
  Copyright terms: Public domain W3C validator