MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptco Structured version   Visualization version   GIF version

Theorem fmptco 6396
Description: Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1 ((𝜑𝑥𝐴) → 𝑅𝐵)
fmptco.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptco.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptco.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptco (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝑅   𝜑,𝑥   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptco
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 5633 . 2 Rel (𝐺𝐹)
2 mptrel 5248 . 2 Rel (𝑥𝐴𝑇)
3 fmptco.2 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥𝐴𝑅))
4 fmptco.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑅𝐵)
53, 4fmpt3d 6386 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
65ffund 6049 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
7 funbrfv 6234 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧𝐹𝑢 → (𝐹𝑧) = 𝑢))
87imp 445 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
96, 8sylan 488 . . . . . . . . 9 ((𝜑𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
109eqcomd 2628 . . . . . . . 8 ((𝜑𝑧𝐹𝑢) → 𝑢 = (𝐹𝑧))
1110a1d 25 . . . . . . 7 ((𝜑𝑧𝐹𝑢) → (𝑢𝐺𝑤𝑢 = (𝐹𝑧)))
1211expimpd 629 . . . . . 6 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) → 𝑢 = (𝐹𝑧)))
1312pm4.71rd 667 . . . . 5 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
1413exbidv 1850 . . . 4 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
15 fvex 6201 . . . . . 6 (𝐹𝑧) ∈ V
16 breq2 4657 . . . . . . 7 (𝑢 = (𝐹𝑧) → (𝑧𝐹𝑢𝑧𝐹(𝐹𝑧)))
17 breq1 4656 . . . . . . 7 (𝑢 = (𝐹𝑧) → (𝑢𝐺𝑤 ↔ (𝐹𝑧)𝐺𝑤))
1816, 17anbi12d 747 . . . . . 6 (𝑢 = (𝐹𝑧) → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
1915, 18ceqsexv 3242 . . . . 5 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤))
20 funfvbrb 6330 . . . . . . . . 9 (Fun 𝐹 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
216, 20syl 17 . . . . . . . 8 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
22 fdm 6051 . . . . . . . . . 10 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
235, 22syl 17 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
2423eleq2d 2687 . . . . . . . 8 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐴))
2521, 24bitr3d 270 . . . . . . 7 (𝜑 → (𝑧𝐹(𝐹𝑧) ↔ 𝑧𝐴))
263fveq1d 6193 . . . . . . . 8 (𝜑 → (𝐹𝑧) = ((𝑥𝐴𝑅)‘𝑧))
27 fmptco.3 . . . . . . . 8 (𝜑𝐺 = (𝑦𝐵𝑆))
28 eqidd 2623 . . . . . . . 8 (𝜑𝑤 = 𝑤)
2926, 27, 28breq123d 4667 . . . . . . 7 (𝜑 → ((𝐹𝑧)𝐺𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
3025, 29anbi12d 747 . . . . . 6 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤)))
31 nfcv 2764 . . . . . . . . 9 𝑥𝑧
32 nfv 1843 . . . . . . . . . 10 𝑥𝜑
33 nffvmpt1 6199 . . . . . . . . . . . 12 𝑥((𝑥𝐴𝑅)‘𝑧)
34 nfcv 2764 . . . . . . . . . . . 12 𝑥(𝑦𝐵𝑆)
35 nfcv 2764 . . . . . . . . . . . 12 𝑥𝑤
3633, 34, 35nfbr 4699 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤
37 nfcsb1v 3549 . . . . . . . . . . . 12 𝑥𝑧 / 𝑥𝑇
3837nfeq2 2780 . . . . . . . . . . 11 𝑥 𝑤 = 𝑧 / 𝑥𝑇
3936, 38nfbi 1833 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)
4032, 39nfim 1825 . . . . . . . . 9 𝑥(𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
41 fveq2 6191 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐴𝑅)‘𝑥) = ((𝑥𝐴𝑅)‘𝑧))
4241breq1d 4663 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
43 csbeq1a 3542 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑇 = 𝑧 / 𝑥𝑇)
4443eqeq2d 2632 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑤 = 𝑇𝑤 = 𝑧 / 𝑥𝑇))
4542, 44bibi12d 335 . . . . . . . . . 10 (𝑥 = 𝑧 → ((((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇) ↔ (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
4645imbi2d 330 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))))
47 vex 3203 . . . . . . . . . . . 12 𝑤 ∈ V
48 simpl 473 . . . . . . . . . . . . . . 15 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑦 = 𝑅)
4948eleq1d 2686 . . . . . . . . . . . . . 14 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑦𝐵𝑅𝐵))
50 id 22 . . . . . . . . . . . . . . 15 (𝑢 = 𝑤𝑢 = 𝑤)
51 fmptco.4 . . . . . . . . . . . . . . 15 (𝑦 = 𝑅𝑆 = 𝑇)
5250, 51eqeqan12rd 2640 . . . . . . . . . . . . . 14 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑢 = 𝑆𝑤 = 𝑇))
5349, 52anbi12d 747 . . . . . . . . . . . . 13 ((𝑦 = 𝑅𝑢 = 𝑤) → ((𝑦𝐵𝑢 = 𝑆) ↔ (𝑅𝐵𝑤 = 𝑇)))
54 df-mpt 4730 . . . . . . . . . . . . 13 (𝑦𝐵𝑆) = {⟨𝑦, 𝑢⟩ ∣ (𝑦𝐵𝑢 = 𝑆)}
5553, 54brabga 4989 . . . . . . . . . . . 12 ((𝑅𝐵𝑤 ∈ V) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
564, 47, 55sylancl 694 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
57 id 22 . . . . . . . . . . . . 13 (𝑥𝐴𝑥𝐴)
58 eqid 2622 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5958fvmpt2 6291 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅𝐵) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
6057, 4, 59syl2an2 875 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
6160breq1d 4663 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑅(𝑦𝐵𝑆)𝑤))
624biantrurd 529 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑤 = 𝑇 ↔ (𝑅𝐵𝑤 = 𝑇)))
6356, 61, 623bitr4d 300 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇))
6463expcom 451 . . . . . . . . 9 (𝑥𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)))
6531, 40, 46, 64vtoclgaf 3271 . . . . . . . 8 (𝑧𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
6665impcom 446 . . . . . . 7 ((𝜑𝑧𝐴) → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
6766pm5.32da 673 . . . . . 6 (𝜑 → ((𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6830, 67bitrd 268 . . . . 5 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6919, 68syl5bb 272 . . . 4 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
7014, 69bitrd 268 . . 3 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
71 vex 3203 . . . 4 𝑧 ∈ V
7271, 47opelco 5293 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤))
73 df-mpt 4730 . . . . 5 (𝑥𝐴𝑇) = {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)}
7473eleq2i 2693 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)})
75 nfv 1843 . . . . . 6 𝑥 𝑧𝐴
7637nfeq2 2780 . . . . . 6 𝑥 𝑣 = 𝑧 / 𝑥𝑇
7775, 76nfan 1828 . . . . 5 𝑥(𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)
78 nfv 1843 . . . . 5 𝑣(𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)
79 eleq1 2689 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
8043eqeq2d 2632 . . . . . 6 (𝑥 = 𝑧 → (𝑣 = 𝑇𝑣 = 𝑧 / 𝑥𝑇))
8179, 80anbi12d 747 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑣 = 𝑇) ↔ (𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)))
82 eqeq1 2626 . . . . . 6 (𝑣 = 𝑤 → (𝑣 = 𝑧 / 𝑥𝑇𝑤 = 𝑧 / 𝑥𝑇))
8382anbi2d 740 . . . . 5 (𝑣 = 𝑤 → ((𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8477, 78, 71, 47, 81, 83opelopabf 5000 . . . 4 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)} ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
8574, 84bitri 264 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
8670, 72, 853bitr4g 303 . 2 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇)))
871, 2, 86eqrelrdv 5216 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  csb 3533  cop 4183   class class class wbr 4653  {copab 4712  cmpt 4729  dom cdm 5114  ccom 5118  Fun wfun 5882  wf 5884  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by:  fmptcof  6397  cofmpt  6399  fcompt  6400  fcoconst  6401  ofco  6917  ccatco  13581  lo1o12  14264  rlimcn1  14319  rlimcn1b  14320  rlimdiv  14376  ackbijnn  14560  setcepi  16738  prf1st  16844  prf2nd  16845  hofcllem  16898  prdsidlem  17322  pws0g  17326  pwsco1mhm  17370  pwsco2mhm  17371  pwsinvg  17528  pwssub  17529  galactghm  17823  efginvrel1  18141  frgpup3lem  18190  gsumzf1o  18313  gsumconst  18334  gsummptshft  18336  gsumzmhm  18337  gsummhm2  18339  gsummptmhm  18340  gsumsub  18348  gsum2dlem2  18370  dprdfsub  18420  lmhmvsca  19045  psrass1lem  19377  psrlinv  19397  psrcom  19409  evlslem2  19512  coe1fval3  19578  psropprmul  19608  coe1z  19633  coe1mul2  19639  coe1tm  19643  ply1coe  19666  evls1sca  19688  frgpcyg  19922  evpmodpmf1o  19942  mhmvlin  20203  ofco2  20257  mdetleib2  20394  mdetralt  20414  smadiadetlem3  20474  ptrescn  21442  lmcn2  21452  qtopeu  21519  flfcnp2  21811  tgpconncomp  21916  tsmsmhm  21949  tsmssub  21952  tsmsxplem1  21956  negfcncf  22722  pcopt  22822  pcopt2  22823  pi1xfrcnvlem  22856  ovolctb  23258  ovolfs2  23339  uniioombllem2  23351  uniioombllem3  23353  ismbf  23397  mbfconst  23402  ismbfcn2  23406  itg1climres  23481  iblabslem  23594  iblabs  23595  bddmulibl  23605  limccnp  23655  limccnp2  23656  limcco  23657  dvcof  23711  dvcjbr  23712  dvcj  23713  dvfre  23714  dvmptcj  23731  dvmptco  23735  dvcnvlem  23739  dvef  23743  dvlip  23756  dvlipcn  23757  itgsubstlem  23811  plypf1  23968  plyco  23997  dgrcolem1  24029  dgrcolem2  24030  dgrco  24031  plycjlem  24032  taylply2  24122  logcn  24393  leibpi  24669  efrlim  24696  jensenlem2  24714  amgmlem  24716  lgamgulmlem2  24756  lgamcvg2  24781  ftalem7  24805  lgseisenlem4  25103  dchrisum0  25209  ofcfval4  30167  eulerpartgbij  30434  dstfrvclim1  30539  cvmliftlem6  31272  cvmliftphtlem  31299  cvmlift3lem5  31305  elmsubrn  31425  msubco  31428  circum  31568  mblfinlem2  33447  volsupnfl  33454  itgaddnc  33470  itgmulc2nc  33478  ftc1anclem1  33485  ftc1anclem2  33486  ftc1anclem3  33487  ftc1anclem4  33488  ftc1anclem5  33489  ftc1anclem7  33491  ftc1anclem8  33492  fnopabco  33517  upixp  33524  mendassa  37764  fsovrfovd  38303  fsovcnvlem  38307  cncfcompt  40096  dvcosax  40141  dirkercncflem4  40323  fourierdlem111  40434  meadjiunlem  40682  meadjiun  40683  amgmwlem  42548  amgmlemALT  42549
  Copyright terms: Public domain W3C validator