Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004lem3 Structured version   Visualization version   GIF version

Theorem k0004lem3 38447
Description: When the value of a mapping on a singleton is known, the mapping is a a completely known singleton. (Contributed by RP, 2-Apr-2021.)
Assertion
Ref Expression
k0004lem3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))

Proof of Theorem k0004lem3
StepHypRef Expression
1 sneq 4187 . . . . . 6 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} = {𝐶})
2 eqimss 3657 . . . . . 6 ({(𝐹𝐴)} = {𝐶} → {(𝐹𝐴)} ⊆ {𝐶})
31, 2syl 17 . . . . 5 ((𝐹𝐴) = 𝐶 → {(𝐹𝐴)} ⊆ {𝐶})
4 fvex 6201 . . . . . 6 (𝐹𝐴) ∈ V
54snsssn 4372 . . . . 5 ({(𝐹𝐴)} ⊆ {𝐶} → (𝐹𝐴) = 𝐶)
63, 5impbii 199 . . . 4 ((𝐹𝐴) = 𝐶 ↔ {(𝐹𝐴)} ⊆ {𝐶})
7 elmapfn 7880 . . . . . 6 (𝐹 ∈ (𝐵𝑚 {𝐴}) → 𝐹 Fn {𝐴})
8 simpl1 1064 . . . . . . 7 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵𝑚 {𝐴})) → 𝐴𝑈)
9 snidg 4206 . . . . . . 7 (𝐴𝑈𝐴 ∈ {𝐴})
108, 9syl 17 . . . . . 6 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵𝑚 {𝐴})) → 𝐴 ∈ {𝐴})
11 fnsnfv 6258 . . . . . 6 ((𝐹 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
127, 10, 11syl2an2 875 . . . . 5 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵𝑚 {𝐴})) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1312sseq1d 3632 . . . 4 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵𝑚 {𝐴})) → ({(𝐹𝐴)} ⊆ {𝐶} ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
146, 13syl5bb 272 . . 3 (((𝐴𝑈𝐵𝑉𝐶𝐵) ∧ 𝐹 ∈ (𝐵𝑚 {𝐴})) → ((𝐹𝐴) = 𝐶 ↔ (𝐹 “ {𝐴}) ⊆ {𝐶}))
1514pm5.32da 673 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ (𝐹 ∈ (𝐵𝑚 {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶})))
16 snex 4908 . . 3 {𝐴} ∈ V
17 simp2 1062 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐵𝑉)
18 simp3 1063 . . . 4 ((𝐴𝑈𝐵𝑉𝐶𝐵) → 𝐶𝐵)
1918snssd 4340 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → {𝐶} ⊆ 𝐵)
20 k0004lem2 38446 . . 3 (({𝐴} ∈ V ∧ 𝐵𝑉 ∧ {𝐶} ⊆ 𝐵) → ((𝐹 ∈ (𝐵𝑚 {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑𝑚 {𝐴})))
2116, 17, 19, 20mp3an2i 1429 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 {𝐴}) ∧ (𝐹 “ {𝐴}) ⊆ {𝐶}) ↔ 𝐹 ∈ ({𝐶} ↑𝑚 {𝐴})))
22 snex 4908 . . . 4 {𝐶} ∈ V
2322, 16elmap 7886 . . 3 (𝐹 ∈ ({𝐶} ↑𝑚 {𝐴}) ↔ 𝐹:{𝐴}⟶{𝐶})
24 fsng 6404 . . . 4 ((𝐴𝑈𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
25243adant2 1080 . . 3 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹:{𝐴}⟶{𝐶} ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2623, 25syl5bb 272 . 2 ((𝐴𝑈𝐵𝑉𝐶𝐵) → (𝐹 ∈ ({𝐶} ↑𝑚 {𝐴}) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
2715, 21, 263bitrd 294 1 ((𝐴𝑈𝐵𝑉𝐶𝐵) → ((𝐹 ∈ (𝐵𝑚 {𝐴}) ∧ (𝐹𝐴) = 𝐶) ↔ 𝐹 = {⟨𝐴, 𝐶⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574  {csn 4177  cop 4183  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  k0004val0  38452
  Copyright terms: Public domain W3C validator