| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnexch2 | Structured version Visualization version GIF version | ||
| Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgbtwnintr.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgbtwnintr.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgbtwnintr.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgbtwnintr.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgbtwnexch2.1 | ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) |
| tgbtwnexch2.2 | ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) |
| Ref | Expression |
|---|---|
| tgbtwnexch2 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 = 𝐶) | |
| 2 | tgbtwnexch2.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝐷)) | |
| 3 | 2 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 4 | 1, 3 | eqeltrrd 2702 | . 2 ⊢ ((𝜑 ∧ 𝐵 = 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 5 | tkgeom.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | tkgeom.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 7 | tkgeom.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 8 | tkgeom.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 9 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
| 10 | tgbtwnintr.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
| 12 | tgbtwnintr.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 13 | 12 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
| 14 | tgbtwnintr.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 15 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
| 16 | tgbtwnintr.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 17 | 16 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐷 ∈ 𝑃) |
| 18 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ≠ 𝐶) | |
| 19 | tgbtwnexch2.2 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐵𝐼𝐷)) | |
| 20 | 19 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐵𝐼𝐷)) |
| 21 | 2 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐼𝐷)) |
| 22 | 5, 6, 7, 9, 15, 13, 11, 17, 20, 21 | tgbtwnintr 25388 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐶𝐼𝐴)) |
| 23 | 5, 6, 7, 9, 15, 13, 11, 22 | tgbtwncom 25383 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 24 | 5, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20 | tgbtwnouttr2 25390 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≠ 𝐶) → 𝐶 ∈ (𝐴𝐼𝐷)) |
| 25 | 4, 24 | pm2.61dane 2881 | 1 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐼𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 distcds 15950 TarskiGcstrkg 25329 Itvcitv 25335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: tgbtwnexch 25393 tgtrisegint 25394 tgbtwnconn1lem3 25469 legtri3 25485 miriso 25565 |
| Copyright terms: Public domain | W3C validator |