MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnexch2 Structured version   Visualization version   Unicode version

Theorem tgbtwnexch2 25391
Description: Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p  |-  P  =  ( Base `  G
)
tkgeom.d  |-  .-  =  ( dist `  G )
tkgeom.i  |-  I  =  (Itv `  G )
tkgeom.g  |-  ( ph  ->  G  e. TarskiG )
tgbtwnintr.1  |-  ( ph  ->  A  e.  P )
tgbtwnintr.2  |-  ( ph  ->  B  e.  P )
tgbtwnintr.3  |-  ( ph  ->  C  e.  P )
tgbtwnintr.4  |-  ( ph  ->  D  e.  P )
tgbtwnexch2.1  |-  ( ph  ->  B  e.  ( A I D ) )
tgbtwnexch2.2  |-  ( ph  ->  C  e.  ( B I D ) )
Assertion
Ref Expression
tgbtwnexch2  |-  ( ph  ->  C  e.  ( A I D ) )

Proof of Theorem tgbtwnexch2
StepHypRef Expression
1 simpr 477 . . 3  |-  ( (
ph  /\  B  =  C )  ->  B  =  C )
2 tgbtwnexch2.1 . . . 4  |-  ( ph  ->  B  e.  ( A I D ) )
32adantr 481 . . 3  |-  ( (
ph  /\  B  =  C )  ->  B  e.  ( A I D ) )
41, 3eqeltrrd 2702 . 2  |-  ( (
ph  /\  B  =  C )  ->  C  e.  ( A I D ) )
5 tkgeom.p . . 3  |-  P  =  ( Base `  G
)
6 tkgeom.d . . 3  |-  .-  =  ( dist `  G )
7 tkgeom.i . . 3  |-  I  =  (Itv `  G )
8 tkgeom.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
98adantr 481 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  G  e. TarskiG )
10 tgbtwnintr.1 . . . 4  |-  ( ph  ->  A  e.  P )
1110adantr 481 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  A  e.  P )
12 tgbtwnintr.2 . . . 4  |-  ( ph  ->  B  e.  P )
1312adantr 481 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  P )
14 tgbtwnintr.3 . . . 4  |-  ( ph  ->  C  e.  P )
1514adantr 481 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  C  e.  P )
16 tgbtwnintr.4 . . . 4  |-  ( ph  ->  D  e.  P )
1716adantr 481 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  D  e.  P )
18 simpr 477 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  B  =/=  C )
19 tgbtwnexch2.2 . . . . . 6  |-  ( ph  ->  C  e.  ( B I D ) )
2019adantr 481 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  C  e.  ( B I D ) )
212adantr 481 . . . . 5  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  ( A I D ) )
225, 6, 7, 9, 15, 13, 11, 17, 20, 21tgbtwnintr 25388 . . . 4  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  ( C I A ) )
235, 6, 7, 9, 15, 13, 11, 22tgbtwncom 25383 . . 3  |-  ( (
ph  /\  B  =/=  C )  ->  B  e.  ( A I C ) )
245, 6, 7, 9, 11, 13, 15, 17, 18, 23, 20tgbtwnouttr2 25390 . 2  |-  ( (
ph  /\  B  =/=  C )  ->  C  e.  ( A I D ) )
254, 24pm2.61dane 2881 1  |-  ( ph  ->  C  e.  ( A I D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tgbtwnexch  25393  tgtrisegint  25394  tgbtwnconn1lem3  25469  legtri3  25485  miriso  25565
  Copyright terms: Public domain W3C validator