MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgidm Structured version   Visualization version   GIF version

Theorem tgidm 20784
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))

Proof of Theorem tgidm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . 5 (topGen‘𝐵) ∈ V
2 eltg3 20766 . . . . 5 ((topGen‘𝐵) ∈ V → (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦)))
31, 2ax-mp 5 . . . 4 (𝑥 ∈ (topGen‘(topGen‘𝐵)) ↔ ∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦))
4 uniiun 4573 . . . . . . . . . 10 𝑦 = 𝑧𝑦 𝑧
5 simpr 477 . . . . . . . . . . . . 13 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ⊆ (topGen‘𝐵))
65sselda 3603 . . . . . . . . . . . 12 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 ∈ (topGen‘𝐵))
7 eltg4i 20764 . . . . . . . . . . . 12 (𝑧 ∈ (topGen‘𝐵) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
86, 7syl 17 . . . . . . . . . . 11 (((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) ∧ 𝑧𝑦) → 𝑧 = (𝐵 ∩ 𝒫 𝑧))
98iuneq2dv 4542 . . . . . . . . . 10 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 𝑧 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
104, 9syl5eq 2668 . . . . . . . . 9 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
11 iuncom4 4528 . . . . . . . . 9 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧)
1210, 11syl6eq 2672 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 = 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧))
13 inss1 3833 . . . . . . . . . . . 12 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1413rgenw 2924 . . . . . . . . . . 11 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
15 iunss 4561 . . . . . . . . . . 11 ( 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵 ↔ ∀𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
1614, 15mpbir 221 . . . . . . . . . 10 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵
1716a1i 11 . . . . . . . . 9 (𝑦 ⊆ (topGen‘𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵)
18 eltg3i 20765 . . . . . . . . 9 ((𝐵𝑉 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ⊆ 𝐵) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
1917, 18sylan2 491 . . . . . . . 8 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑧𝑦 (𝐵 ∩ 𝒫 𝑧) ∈ (topGen‘𝐵))
2012, 19eqeltrd 2701 . . . . . . 7 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → 𝑦 ∈ (topGen‘𝐵))
21 eleq1 2689 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑦 ∈ (topGen‘𝐵)))
2220, 21syl5ibrcom 237 . . . . . 6 ((𝐵𝑉𝑦 ⊆ (topGen‘𝐵)) → (𝑥 = 𝑦𝑥 ∈ (topGen‘𝐵)))
2322expimpd 629 . . . . 5 (𝐵𝑉 → ((𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
2423exlimdv 1861 . . . 4 (𝐵𝑉 → (∃𝑦(𝑦 ⊆ (topGen‘𝐵) ∧ 𝑥 = 𝑦) → 𝑥 ∈ (topGen‘𝐵)))
253, 24syl5bi 232 . . 3 (𝐵𝑉 → (𝑥 ∈ (topGen‘(topGen‘𝐵)) → 𝑥 ∈ (topGen‘𝐵)))
2625ssrdv 3609 . 2 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) ⊆ (topGen‘𝐵))
27 bastg 20770 . . 3 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
28 tgss 20772 . . 3 (((topGen‘𝐵) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐵)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
291, 27, 28sylancr 695 . 2 (𝐵𝑉 → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐵)))
3026, 29eqssd 3620 1 (𝐵𝑉 → (topGen‘(topGen‘𝐵)) = (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   ciun 4520  cfv 5888  topGenctg 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104
This theorem is referenced by:  tgss3  20790  txbasval  21409
  Copyright terms: Public domain W3C validator