MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txbasval Structured version   Visualization version   GIF version

Theorem txbasval 21409
Description: It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
txbasval ((𝑅𝑉𝑆𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆))

Proof of Theorem txbasval
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txval 21367 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3 bastg 20770 . . . . . . 7 (𝑅𝑉𝑅 ⊆ (topGen‘𝑅))
4 bastg 20770 . . . . . . 7 (𝑆𝑊𝑆 ⊆ (topGen‘𝑆))
5 resmpt2 6758 . . . . . . 7 ((𝑅 ⊆ (topGen‘𝑅) ∧ 𝑆 ⊆ (topGen‘𝑆)) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
63, 4, 5syl2an 494 . . . . . 6 ((𝑅𝑉𝑆𝑊) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
7 resss 5422 . . . . . 6 ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))
86, 7syl6eqssr 3656 . . . . 5 ((𝑅𝑉𝑆𝑊) → (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
9 rnss 5354 . . . . 5 ((𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
108, 9syl 17 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
11 eltg3 20766 . . . . . . . . . 10 (𝑅𝑉 → (𝑢 ∈ (topGen‘𝑅) ↔ ∃𝑚(𝑚𝑅𝑢 = 𝑚)))
12 eltg3 20766 . . . . . . . . . 10 (𝑆𝑊 → (𝑣 ∈ (topGen‘𝑆) ↔ ∃𝑛(𝑛𝑆𝑣 = 𝑛)))
1311, 12bi2anan9 917 . . . . . . . . 9 ((𝑅𝑉𝑆𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) ↔ (∃𝑚(𝑚𝑅𝑢 = 𝑚) ∧ ∃𝑛(𝑛𝑆𝑣 = 𝑛))))
14 eeanv 2182 . . . . . . . . . 10 (∃𝑚𝑛((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) ↔ (∃𝑚(𝑚𝑅𝑢 = 𝑚) ∧ ∃𝑛(𝑛𝑆𝑣 = 𝑛)))
15 an4 865 . . . . . . . . . . . 12 (((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) ↔ ((𝑚𝑅𝑛𝑆) ∧ (𝑢 = 𝑚𝑣 = 𝑛)))
16 uniiun 4573 . . . . . . . . . . . . . . . . 17 𝑚 = 𝑥𝑚 𝑥
17 uniiun 4573 . . . . . . . . . . . . . . . . 17 𝑛 = 𝑦𝑛 𝑦
1816, 17xpeq12i 5137 . . . . . . . . . . . . . . . 16 ( 𝑚 × 𝑛) = ( 𝑥𝑚 𝑥 × 𝑦𝑛 𝑦)
19 xpiundir 5174 . . . . . . . . . . . . . . . 16 ( 𝑥𝑚 𝑥 × 𝑦𝑛 𝑦) = 𝑥𝑚 (𝑥 × 𝑦𝑛 𝑦)
20 xpiundi 5173 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑛 𝑦) = 𝑦𝑛 (𝑥 × 𝑦)
2120a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥𝑚 → (𝑥 × 𝑦𝑛 𝑦) = 𝑦𝑛 (𝑥 × 𝑦))
2221iuneq2i 4539 . . . . . . . . . . . . . . . 16 𝑥𝑚 (𝑥 × 𝑦𝑛 𝑦) = 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦)
2318, 19, 223eqtri 2648 . . . . . . . . . . . . . . 15 ( 𝑚 × 𝑛) = 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦)
24 ovex 6678 . . . . . . . . . . . . . . . . 17 (𝑅 ×t 𝑆) ∈ V
25 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑅𝑥𝑚) → 𝑥𝑅)
26 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑆𝑦𝑛) → 𝑦𝑆)
2725, 26anim12i 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑚𝑅𝑥𝑚) ∧ (𝑛𝑆𝑦𝑛)) → (𝑥𝑅𝑦𝑆))
2827an4s 869 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑚𝑅𝑛𝑆) ∧ (𝑥𝑚𝑦𝑛)) → (𝑥𝑅𝑦𝑆))
29 txopn 21405 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅𝑉𝑆𝑊) ∧ (𝑥𝑅𝑦𝑆)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3028, 29sylan2 491 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅𝑉𝑆𝑊) ∧ ((𝑚𝑅𝑛𝑆) ∧ (𝑥𝑚𝑦𝑛))) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3130anassrs 680 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ (𝑥𝑚𝑦𝑛)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3231anassrs 680 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) ∧ 𝑦𝑛) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3332ralrimiva 2966 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → ∀𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
34 tgiun 20783 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
3524, 33, 34sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
361txbasex 21369 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
37 tgidm 20784 . . . . . . . . . . . . . . . . . . . . . . 23 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → (topGen‘(topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅𝑉𝑆𝑊) → (topGen‘(topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
392fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅𝑉𝑆𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (topGen‘(topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))))
4038, 39, 23eqtr4d 2666 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑉𝑆𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆))
4140adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆))
4241adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆))
4335, 42eleqtrd 2703 . . . . . . . . . . . . . . . . . 18 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
4443ralrimiva 2966 . . . . . . . . . . . . . . . . 17 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → ∀𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
45 tgiun 20783 . . . . . . . . . . . . . . . . 17 (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
4624, 44, 45sylancr 695 . . . . . . . . . . . . . . . 16 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
4746, 41eleqtrd 2703 . . . . . . . . . . . . . . 15 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
4823, 47syl5eqel 2705 . . . . . . . . . . . . . 14 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → ( 𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
49 xpeq12 5134 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑚𝑣 = 𝑛) → (𝑢 × 𝑣) = ( 𝑚 × 𝑛))
5049eleq1d 2686 . . . . . . . . . . . . . 14 ((𝑢 = 𝑚𝑣 = 𝑛) → ((𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ ( 𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
5148, 50syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → ((𝑢 = 𝑚𝑣 = 𝑛) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5251expimpd 629 . . . . . . . . . . . 12 ((𝑅𝑉𝑆𝑊) → (((𝑚𝑅𝑛𝑆) ∧ (𝑢 = 𝑚𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5315, 52syl5bi 232 . . . . . . . . . . 11 ((𝑅𝑉𝑆𝑊) → (((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5453exlimdvv 1862 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊) → (∃𝑚𝑛((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5514, 54syl5bir 233 . . . . . . . . 9 ((𝑅𝑉𝑆𝑊) → ((∃𝑚(𝑚𝑅𝑢 = 𝑚) ∧ ∃𝑛(𝑛𝑆𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5613, 55sylbid 230 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5756ralrimivv 2970 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → ∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))
58 eqid 2622 . . . . . . . 8 (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))
5958fmpt2 7237 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆))
6057, 59sylib 208 . . . . . 6 ((𝑅𝑉𝑆𝑊) → (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆))
61 frn 6053 . . . . . 6 ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (𝑅 ×t 𝑆))
6260, 61syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (𝑅 ×t 𝑆))
6362, 2sseqtrd 3641 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
64 2basgen 20794 . . . 4 ((ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ∧ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))))
6510, 63, 64syl2anc 693 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))))
66 fvex 6201 . . . 4 (topGen‘𝑅) ∈ V
67 fvex 6201 . . . 4 (topGen‘𝑆) ∈ V
68 eqid 2622 . . . . 5 ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))
6968txval 21367 . . . 4 (((topGen‘𝑅) ∈ V ∧ (topGen‘𝑆) ∈ V) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))))
7066, 67, 69mp2an 708 . . 3 ((topGen‘𝑅) ×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
7165, 70syl6eqr 2674 . 2 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ((topGen‘𝑅) ×t (topGen‘𝑆)))
722, 71eqtr2d 2657 1 ((𝑅𝑉𝑆𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  wss 3574   cuni 4436   ciun 4520   × cxp 5112  ran crn 5115  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  topGenctg 16098   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-topgen 16104  df-tx 21365
This theorem is referenced by:  tx2ndc  21454  mbfimaopnlem  23422
  Copyright terms: Public domain W3C validator