MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglineneq Structured version   Visualization version   GIF version

Theorem tglineneq 25539
Description: Given three non-colinear points, build two different lines. (Contributed by Thierry Arnoux, 6-Aug-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
tglineinteq.a (𝜑𝐴𝑃)
tglineinteq.b (𝜑𝐵𝑃)
tglineinteq.c (𝜑𝐶𝑃)
tglineinteq.d (𝜑𝐷𝑃)
tglineinteq.e (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
Assertion
Ref Expression
tglineneq (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))

Proof of Theorem tglineneq
StepHypRef Expression
1 tglineintmo.p . . . . 5 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . 5 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
5 tglineinteq.a . . . . 5 (𝜑𝐴𝑃)
6 tglineinteq.b . . . . 5 (𝜑𝐵𝑃)
7 tglineinteq.c . . . . . 6 (𝜑𝐶𝑃)
8 tglineinteq.e . . . . . 6 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
91, 2, 3, 4, 5, 6, 7, 8ncolne1 25520 . . . . 5 (𝜑𝐴𝐵)
101, 2, 3, 4, 5, 6, 9tglinerflx1 25528 . . . 4 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
1110adantr 481 . . 3 ((𝜑𝐶 = 𝐷) → 𝐴 ∈ (𝐴𝐿𝐵))
12 simplr 792 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶 = 𝐷)
134adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
147adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝑃)
15 tglineinteq.d . . . . . . . 8 (𝜑𝐷𝑃)
1615adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐷𝑃)
17 simpr 477 . . . . . . 7 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
181, 3, 2, 13, 14, 16, 17tglngne 25445 . . . . . 6 ((𝜑𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
1918adantlr 751 . . . . 5 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → 𝐶𝐷)
2019neneqd 2799 . . . 4 (((𝜑𝐶 = 𝐷) ∧ 𝐴 ∈ (𝐶𝐿𝐷)) → ¬ 𝐶 = 𝐷)
2112, 20pm2.65da 600 . . 3 ((𝜑𝐶 = 𝐷) → ¬ 𝐴 ∈ (𝐶𝐿𝐷))
22 nelne1 2890 . . 3 ((𝐴 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 ∈ (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
2311, 21, 22syl2anc 693 . 2 ((𝜑𝐶 = 𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
244ad2antrr 762 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐺 ∈ TarskiG)
256ad2antrr 762 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝑃)
267ad2antrr 762 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝑃)
275ad2antrr 762 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝑃)
28 pm2.46 413 . . . . . . . . 9 (¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶) → ¬ 𝐵 = 𝐶)
298, 28syl 17 . . . . . . . 8 (𝜑 → ¬ 𝐵 = 𝐶)
3029neqned 2801 . . . . . . 7 (𝜑𝐵𝐶)
3130ad2antrr 762 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐵𝐶)
3215ad2antrr 762 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐷𝑃)
33 simplr 792 . . . . . . . 8 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶𝐷)
341, 2, 3, 24, 26, 32, 33tglinerflx1 25528 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
35 simpr 477 . . . . . . 7 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
3634, 35eleqtrrd 2704 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐴𝐿𝐵))
371, 3, 2, 24, 27, 25, 36tglngne 25445 . . . . . 6 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴𝐵)
381, 2, 3, 24, 25, 26, 27, 31, 36, 37lnrot1 25518 . . . . 5 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐵𝐿𝐶))
3938orcd 407 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
408ad2antrr 762 . . . 4 (((𝜑𝐶𝐷) ∧ (𝐴𝐿𝐵) = (𝐶𝐿𝐷)) → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
4139, 40pm2.65da 600 . . 3 ((𝜑𝐶𝐷) → ¬ (𝐴𝐿𝐵) = (𝐶𝐿𝐷))
4241neqned 2801 . 2 ((𝜑𝐶𝐷) → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
4323, 42pm2.61dane 2881 1 (𝜑 → (𝐴𝐿𝐵) ≠ (𝐶𝐿𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  Basecbs 15857  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tglineinteq  25540  perpneq  25609
  Copyright terms: Public domain W3C validator