| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgsegconeq | Structured version Visualization version GIF version | ||
| Description: Two points that satisfy the conclusion of axtgsegcon 25363 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p | ⊢ 𝑃 = (Base‘𝐺) |
| tkgeom.d | ⊢ − = (dist‘𝐺) |
| tkgeom.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tkgeom.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tgcgrextend.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| tgcgrextend.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| tgcgrextend.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| tgcgrextend.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| tgcgrextend.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| tgcgrextend.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| tgsegconeq.1 | ⊢ (𝜑 → 𝐷 ≠ 𝐴) |
| tgsegconeq.2 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) |
| tgsegconeq.3 | ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) |
| tgsegconeq.4 | ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) |
| tgsegconeq.5 | ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) |
| Ref | Expression |
|---|---|
| tgsegconeq | ⊢ (𝜑 → 𝐸 = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | tkgeom.d | . 2 ⊢ − = (dist‘𝐺) | |
| 3 | tkgeom.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | tkgeom.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | tgcgrextend.e | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 6 | tgcgrextend.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 7 | tgcgrextend.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 8 | tgcgrextend.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | tgsegconeq.1 | . . . 4 ⊢ (𝜑 → 𝐷 ≠ 𝐴) | |
| 10 | tgsegconeq.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐸)) | |
| 11 | eqidd 2623 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐴) = (𝐷 − 𝐴)) | |
| 12 | eqidd 2623 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐸)) | |
| 13 | tgsegconeq.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐷𝐼𝐹)) | |
| 14 | tgsegconeq.4 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐵 − 𝐶)) | |
| 15 | tgsegconeq.5 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐹) = (𝐵 − 𝐶)) | |
| 16 | 14, 15 | eqtr4d 2659 | . . . . 5 ⊢ (𝜑 → (𝐴 − 𝐸) = (𝐴 − 𝐹)) |
| 17 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16 | tgcgrextend 25380 | . . . 4 ⊢ (𝜑 → (𝐷 − 𝐸) = (𝐷 − 𝐹)) |
| 18 | 1, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16 | axtg5seg 25364 | . . 3 ⊢ (𝜑 → (𝐸 − 𝐸) = (𝐸 − 𝐹)) |
| 19 | 18 | eqcomd 2628 | . 2 ⊢ (𝜑 → (𝐸 − 𝐹) = (𝐸 − 𝐸)) |
| 20 | 1, 2, 3, 4, 5, 6, 5, 19 | axtgcgrid 25362 | 1 ⊢ (𝜑 → 𝐸 = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 distcds 15950 TarskiGcstrkg 25329 Itvcitv 25335 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgc 25347 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: tgbtwnouttr2 25390 tgcgrxfr 25413 tgbtwnconn1lem1 25467 hlcgreulem 25512 mirreu3 25549 |
| Copyright terms: Public domain | W3C validator |