MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgsegconeq Structured version   Visualization version   Unicode version

Theorem tgsegconeq 25381
Description: Two points that satisfy the conclusion of axtgsegcon 25363 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p  |-  P  =  ( Base `  G
)
tkgeom.d  |-  .-  =  ( dist `  G )
tkgeom.i  |-  I  =  (Itv `  G )
tkgeom.g  |-  ( ph  ->  G  e. TarskiG )
tgcgrextend.a  |-  ( ph  ->  A  e.  P )
tgcgrextend.b  |-  ( ph  ->  B  e.  P )
tgcgrextend.c  |-  ( ph  ->  C  e.  P )
tgcgrextend.d  |-  ( ph  ->  D  e.  P )
tgcgrextend.e  |-  ( ph  ->  E  e.  P )
tgcgrextend.f  |-  ( ph  ->  F  e.  P )
tgsegconeq.1  |-  ( ph  ->  D  =/=  A )
tgsegconeq.2  |-  ( ph  ->  A  e.  ( D I E ) )
tgsegconeq.3  |-  ( ph  ->  A  e.  ( D I F ) )
tgsegconeq.4  |-  ( ph  ->  ( A  .-  E
)  =  ( B 
.-  C ) )
tgsegconeq.5  |-  ( ph  ->  ( A  .-  F
)  =  ( B 
.-  C ) )
Assertion
Ref Expression
tgsegconeq  |-  ( ph  ->  E  =  F )

Proof of Theorem tgsegconeq
StepHypRef Expression
1 tkgeom.p . 2  |-  P  =  ( Base `  G
)
2 tkgeom.d . 2  |-  .-  =  ( dist `  G )
3 tkgeom.i . 2  |-  I  =  (Itv `  G )
4 tkgeom.g . 2  |-  ( ph  ->  G  e. TarskiG )
5 tgcgrextend.e . 2  |-  ( ph  ->  E  e.  P )
6 tgcgrextend.f . 2  |-  ( ph  ->  F  e.  P )
7 tgcgrextend.d . . . 4  |-  ( ph  ->  D  e.  P )
8 tgcgrextend.a . . . 4  |-  ( ph  ->  A  e.  P )
9 tgsegconeq.1 . . . 4  |-  ( ph  ->  D  =/=  A )
10 tgsegconeq.2 . . . 4  |-  ( ph  ->  A  e.  ( D I E ) )
11 eqidd 2623 . . . 4  |-  ( ph  ->  ( D  .-  A
)  =  ( D 
.-  A ) )
12 eqidd 2623 . . . 4  |-  ( ph  ->  ( A  .-  E
)  =  ( A 
.-  E ) )
13 tgsegconeq.3 . . . . 5  |-  ( ph  ->  A  e.  ( D I F ) )
14 tgsegconeq.4 . . . . . 6  |-  ( ph  ->  ( A  .-  E
)  =  ( B 
.-  C ) )
15 tgsegconeq.5 . . . . . 6  |-  ( ph  ->  ( A  .-  F
)  =  ( B 
.-  C ) )
1614, 15eqtr4d 2659 . . . . 5  |-  ( ph  ->  ( A  .-  E
)  =  ( A 
.-  F ) )
171, 2, 3, 4, 7, 8, 5, 7, 8, 6, 10, 13, 11, 16tgcgrextend 25380 . . . 4  |-  ( ph  ->  ( D  .-  E
)  =  ( D 
.-  F ) )
181, 2, 3, 4, 7, 8, 5, 7, 8, 5, 5, 6, 9, 10, 10, 11, 12, 17, 16axtg5seg 25364 . . 3  |-  ( ph  ->  ( E  .-  E
)  =  ( E 
.-  F ) )
1918eqcomd 2628 . 2  |-  ( ph  ->  ( E  .-  F
)  =  ( E 
.-  E ) )
201, 2, 3, 4, 5, 6, 5, 19axtgcgrid 25362 1  |-  ( ph  ->  E  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tgbtwnouttr2  25390  tgcgrxfr  25413  tgbtwnconn1lem1  25467  hlcgreulem  25512  mirreu3  25549
  Copyright terms: Public domain W3C validator