MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposmap Structured version   Visualization version   GIF version

Theorem tposmap 20263
Description: The transposition of an I X J -matrix is a J X I -matrix, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Assertion
Ref Expression
tposmap (𝐴 ∈ (𝐵𝑚 (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵𝑚 (𝐽 × 𝐼)))

Proof of Theorem tposmap
StepHypRef Expression
1 elmapi 7879 . . 3 (𝐴 ∈ (𝐵𝑚 (𝐼 × 𝐽)) → 𝐴:(𝐼 × 𝐽)⟶𝐵)
2 tposf 7380 . . 3 (𝐴:(𝐼 × 𝐽)⟶𝐵 → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)
31, 2syl 17 . 2 (𝐴 ∈ (𝐵𝑚 (𝐼 × 𝐽)) → tpos 𝐴:(𝐽 × 𝐼)⟶𝐵)
4 elmapex 7878 . . 3 (𝐴 ∈ (𝐵𝑚 (𝐼 × 𝐽)) → (𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V))
5 cnvxp 5551 . . . . 5 (𝐼 × 𝐽) = (𝐽 × 𝐼)
6 cnvexg 7112 . . . . 5 ((𝐼 × 𝐽) ∈ V → (𝐼 × 𝐽) ∈ V)
75, 6syl5eqelr 2706 . . . 4 ((𝐼 × 𝐽) ∈ V → (𝐽 × 𝐼) ∈ V)
87anim2i 593 . . 3 ((𝐵 ∈ V ∧ (𝐼 × 𝐽) ∈ V) → (𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V))
9 elmapg 7870 . . 3 ((𝐵 ∈ V ∧ (𝐽 × 𝐼) ∈ V) → (tpos 𝐴 ∈ (𝐵𝑚 (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵))
104, 8, 93syl 18 . 2 (𝐴 ∈ (𝐵𝑚 (𝐼 × 𝐽)) → (tpos 𝐴 ∈ (𝐵𝑚 (𝐽 × 𝐼)) ↔ tpos 𝐴:(𝐽 × 𝐼)⟶𝐵))
113, 10mpbird 247 1 (𝐴 ∈ (𝐵𝑚 (𝐼 × 𝐽)) → tpos 𝐴 ∈ (𝐵𝑚 (𝐽 × 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  Vcvv 3200   × cxp 5112  ccnv 5113  wf 5884  (class class class)co 6650  tpos ctpos 7351  𝑚 cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-tpos 7352  df-map 7859
This theorem is referenced by:  mamutpos  20264
  Copyright terms: Public domain W3C validator