MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclublem Structured version   Visualization version   GIF version

Theorem trclublem 13734
Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclublem (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Distinct variable group:   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem trclublem
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trclexlem 13733 . 2 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V)
2 ssun1 3776 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3 relcnv 5503 . . . . . . . . . . . . . 14 Rel 𝑅
4 relssdmrn 5656 . . . . . . . . . . . . . 14 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
53, 4ax-mp 5 . . . . . . . . . . . . 13 𝑅 ⊆ (dom 𝑅 × ran 𝑅)
6 ssequn1 3783 . . . . . . . . . . . . 13 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) ↔ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅))
75, 6mpbi 220 . . . . . . . . . . . 12 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
8 cnvun 5538 . . . . . . . . . . . . 13 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (𝑅(dom 𝑅 × ran 𝑅))
9 cnvxp 5551 . . . . . . . . . . . . . . 15 (dom 𝑅 × ran 𝑅) = (ran 𝑅 × dom 𝑅)
10 df-rn 5125 . . . . . . . . . . . . . . . 16 ran 𝑅 = dom 𝑅
11 dfdm4 5316 . . . . . . . . . . . . . . . 16 dom 𝑅 = ran 𝑅
1210, 11xpeq12i 5137 . . . . . . . . . . . . . . 15 (ran 𝑅 × dom 𝑅) = (dom 𝑅 × ran 𝑅)
139, 12eqtri 2644 . . . . . . . . . . . . . 14 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1413uneq2i 3764 . . . . . . . . . . . . 13 (𝑅(dom 𝑅 × ran 𝑅)) = (𝑅 ∪ (dom 𝑅 × ran 𝑅))
158, 14eqtri 2644 . . . . . . . . . . . 12 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (𝑅 ∪ (dom 𝑅 × ran 𝑅))
167, 15, 133eqtr4i 2654 . . . . . . . . . . 11 (𝑅 ∪ (dom 𝑅 × ran 𝑅)) = (dom 𝑅 × ran 𝑅)
1716breqi 4659 . . . . . . . . . 10 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎𝑏(dom 𝑅 × ran 𝑅)𝑎)
18 vex 3203 . . . . . . . . . . 11 𝑏 ∈ V
19 vex 3203 . . . . . . . . . . 11 𝑎 ∈ V
2018, 19brcnv 5305 . . . . . . . . . 10 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑎𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏)
2118, 19brcnv 5305 . . . . . . . . . 10 (𝑏(dom 𝑅 × ran 𝑅)𝑎𝑎(dom 𝑅 × ran 𝑅)𝑏)
2217, 20, 213bitr3i 290 . . . . . . . . 9 (𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑎(dom 𝑅 × ran 𝑅)𝑏)
2316breqi 4659 . . . . . . . . . 10 (𝑐(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑐(dom 𝑅 × ran 𝑅)𝑏)
24 vex 3203 . . . . . . . . . . 11 𝑐 ∈ V
2524, 18brcnv 5305 . . . . . . . . . 10 (𝑐(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)
2624, 18brcnv 5305 . . . . . . . . . 10 (𝑐(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)
2723, 25, 263bitr3i 290 . . . . . . . . 9 (𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐𝑏(dom 𝑅 × ran 𝑅)𝑐)
2822, 27anbi12i 733 . . . . . . . 8 ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) ↔ (𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
2928biimpi 206 . . . . . . 7 ((𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → (𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
3029eximi 1762 . . . . . 6 (∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐) → ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐))
3130ssopab2i 5003 . . . . 5 {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)} ⊆ {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)}
32 df-co 5123 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑏𝑏(𝑅 ∪ (dom 𝑅 × ran 𝑅))𝑐)}
33 df-co 5123 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) = {⟨𝑎, 𝑐⟩ ∣ ∃𝑏(𝑎(dom 𝑅 × ran 𝑅)𝑏𝑏(dom 𝑅 × ran 𝑅)𝑐)}
3431, 32, 333sstr4i 3644 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
35 xptrrel 13719 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
36 ssun2 3777 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3735, 36sstri 3612 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
3834, 37sstri 3612 . . 3 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
39 trcleq2lem 13730 . . . . 5 (𝑥 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)) → ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))))
4039elabg 3351 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} ↔ (𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))))
4140biimprd 238 . . 3 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → ((𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∧ ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}))
422, 38, 41mp2ani 714 . 2 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ V → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
431, 42syl 17 1 (𝑅𝑉 → (𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∈ {𝑥 ∣ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  Vcvv 3200  cun 3572  wss 3574   class class class wbr 4653  {copab 4712   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  ccom 5118  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  trclubi  13735  trclubiOLD  13736  trclubgi  13737  trclubgiOLD  13738  trclub  13739  trclubg  13740
  Copyright terms: Public domain W3C validator