MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclublem Structured version   Visualization version   Unicode version

Theorem trclublem 13734
Description: If a relation exists then the class of transitive relations which are supersets of that relation is not empty. (Contributed by RP, 28-Apr-2020.)
Assertion
Ref Expression
trclublem  |-  ( R  e.  V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) } )
Distinct variable group:    x, R
Allowed substitution hint:    V( x)

Proof of Theorem trclublem
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trclexlem 13733 . 2  |-  ( R  e.  V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  _V )
2 ssun1 3776 . . 3  |-  R  C_  ( R  u.  ( dom  R  X.  ran  R
) )
3 relcnv 5503 . . . . . . . . . . . . . 14  |-  Rel  `' R
4 relssdmrn 5656 . . . . . . . . . . . . . 14  |-  ( Rel  `' R  ->  `' R  C_  ( dom  `' R  X.  ran  `' R ) )
53, 4ax-mp 5 . . . . . . . . . . . . 13  |-  `' R  C_  ( dom  `' R  X.  ran  `' R )
6 ssequn1 3783 . . . . . . . . . . . . 13  |-  ( `' R  C_  ( dom  `' R  X.  ran  `' R )  <->  ( `' R  u.  ( dom  `' R  X.  ran  `' R ) )  =  ( dom  `' R  X.  ran  `' R ) )
75, 6mpbi 220 . . . . . . . . . . . 12  |-  ( `' R  u.  ( dom  `' R  X.  ran  `' R ) )  =  ( dom  `' R  X.  ran  `' R )
8 cnvun 5538 . . . . . . . . . . . . 13  |-  `' ( R  u.  ( dom 
R  X.  ran  R
) )  =  ( `' R  u.  `' ( dom  R  X.  ran  R ) )
9 cnvxp 5551 . . . . . . . . . . . . . . 15  |-  `' ( dom  R  X.  ran  R )  =  ( ran 
R  X.  dom  R
)
10 df-rn 5125 . . . . . . . . . . . . . . . 16  |-  ran  R  =  dom  `' R
11 dfdm4 5316 . . . . . . . . . . . . . . . 16  |-  dom  R  =  ran  `' R
1210, 11xpeq12i 5137 . . . . . . . . . . . . . . 15  |-  ( ran 
R  X.  dom  R
)  =  ( dom  `' R  X.  ran  `' R )
139, 12eqtri 2644 . . . . . . . . . . . . . 14  |-  `' ( dom  R  X.  ran  R )  =  ( dom  `' R  X.  ran  `' R )
1413uneq2i 3764 . . . . . . . . . . . . 13  |-  ( `' R  u.  `' ( dom  R  X.  ran  R ) )  =  ( `' R  u.  ( dom  `' R  X.  ran  `' R ) )
158, 14eqtri 2644 . . . . . . . . . . . 12  |-  `' ( R  u.  ( dom 
R  X.  ran  R
) )  =  ( `' R  u.  ( dom  `' R  X.  ran  `' R ) )
167, 15, 133eqtr4i 2654 . . . . . . . . . . 11  |-  `' ( R  u.  ( dom 
R  X.  ran  R
) )  =  `' ( dom  R  X.  ran  R )
1716breqi 4659 . . . . . . . . . 10  |-  ( b `' ( R  u.  ( dom  R  X.  ran  R ) ) a  <->  b `' ( dom  R  X.  ran  R ) a )
18 vex 3203 . . . . . . . . . . 11  |-  b  e. 
_V
19 vex 3203 . . . . . . . . . . 11  |-  a  e. 
_V
2018, 19brcnv 5305 . . . . . . . . . 10  |-  ( b `' ( R  u.  ( dom  R  X.  ran  R ) ) a  <->  a ( R  u.  ( dom  R  X.  ran  R ) ) b )
2118, 19brcnv 5305 . . . . . . . . . 10  |-  ( b `' ( dom  R  X.  ran  R ) a  <-> 
a ( dom  R  X.  ran  R ) b )
2217, 20, 213bitr3i 290 . . . . . . . . 9  |-  ( a ( R  u.  ( dom  R  X.  ran  R
) ) b  <->  a ( dom  R  X.  ran  R
) b )
2316breqi 4659 . . . . . . . . . 10  |-  ( c `' ( R  u.  ( dom  R  X.  ran  R ) ) b  <->  c `' ( dom  R  X.  ran  R ) b )
24 vex 3203 . . . . . . . . . . 11  |-  c  e. 
_V
2524, 18brcnv 5305 . . . . . . . . . 10  |-  ( c `' ( R  u.  ( dom  R  X.  ran  R ) ) b  <->  b ( R  u.  ( dom  R  X.  ran  R ) ) c )
2624, 18brcnv 5305 . . . . . . . . . 10  |-  ( c `' ( dom  R  X.  ran  R ) b  <-> 
b ( dom  R  X.  ran  R ) c )
2723, 25, 263bitr3i 290 . . . . . . . . 9  |-  ( b ( R  u.  ( dom  R  X.  ran  R
) ) c  <->  b ( dom  R  X.  ran  R
) c )
2822, 27anbi12i 733 . . . . . . . 8  |-  ( ( a ( R  u.  ( dom  R  X.  ran  R ) ) b  /\  b ( R  u.  ( dom  R  X.  ran  R ) ) c )  <-> 
( a ( dom 
R  X.  ran  R
) b  /\  b
( dom  R  X.  ran  R ) c ) )
2928biimpi 206 . . . . . . 7  |-  ( ( a ( R  u.  ( dom  R  X.  ran  R ) ) b  /\  b ( R  u.  ( dom  R  X.  ran  R ) ) c )  ->  ( a ( dom  R  X.  ran  R ) b  /\  b
( dom  R  X.  ran  R ) c ) )
3029eximi 1762 . . . . . 6  |-  ( E. b ( a ( R  u.  ( dom 
R  X.  ran  R
) ) b  /\  b ( R  u.  ( dom  R  X.  ran  R ) ) c )  ->  E. b ( a ( dom  R  X.  ran  R ) b  /\  b ( dom  R  X.  ran  R ) c ) )
3130ssopab2i 5003 . . . . 5  |-  { <. a ,  c >.  |  E. b ( a ( R  u.  ( dom 
R  X.  ran  R
) ) b  /\  b ( R  u.  ( dom  R  X.  ran  R ) ) c ) }  C_  { <. a ,  c >.  |  E. b ( a ( dom  R  X.  ran  R ) b  /\  b
( dom  R  X.  ran  R ) c ) }
32 df-co 5123 . . . . 5  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  { <. a ,  c >.  |  E. b ( a ( R  u.  ( dom  R  X.  ran  R
) ) b  /\  b ( R  u.  ( dom  R  X.  ran  R ) ) c ) }
33 df-co 5123 . . . . 5  |-  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )  =  { <. a ,  c >.  |  E. b ( a ( dom  R  X.  ran  R ) b  /\  b ( dom  R  X.  ran  R ) c ) }
3431, 32, 333sstr4i 3644 . . . 4  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  (
( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R
) )
35 xptrrel 13719 . . . . 5  |-  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )  C_  ( dom  R  X.  ran  R
)
36 ssun2 3777 . . . . 5  |-  ( dom 
R  X.  ran  R
)  C_  ( R  u.  ( dom  R  X.  ran  R ) )
3735, 36sstri 3612 . . . 4  |-  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )  C_  ( R  u.  ( dom  R  X.  ran  R ) )
3834, 37sstri 3612 . . 3  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  ( R  u.  ( dom  R  X.  ran  R ) )
39 trcleq2lem 13730 . . . . 5  |-  ( x  =  ( R  u.  ( dom  R  X.  ran  R ) )  ->  (
( R  C_  x  /\  ( x  o.  x
)  C_  x )  <->  ( R  C_  ( R  u.  ( dom  R  X.  ran  R ) )  /\  ( ( R  u.  ( dom  R  X.  ran  R ) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  ( R  u.  ( dom  R  X.  ran  R ) ) ) ) )
4039elabg 3351 . . . 4  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  e.  _V  ->  ( ( R  u.  ( dom  R  X.  ran  R ) )  e.  {
x  |  ( R 
C_  x  /\  (
x  o.  x ) 
C_  x ) }  <-> 
( R  C_  ( R  u.  ( dom  R  X.  ran  R ) )  /\  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  ( R  u.  ( dom  R  X.  ran  R ) ) ) ) )
4140biimprd 238 . . 3  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  e.  _V  ->  ( ( R  C_  ( R  u.  ( dom  R  X.  ran  R
) )  /\  (
( R  u.  ( dom  R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  ( R  u.  ( dom  R  X.  ran  R ) ) )  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) } ) )
422, 38, 41mp2ani 714 . 2  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  e.  _V  ->  ( R  u.  ( dom  R  X.  ran  R
) )  e.  {
x  |  ( R 
C_  x  /\  (
x  o.  x ) 
C_  x ) } )
431, 42syl 17 1  |-  ( R  e.  V  ->  ( R  u.  ( dom  R  X.  ran  R ) )  e.  { x  |  ( R  C_  x  /\  ( x  o.  x )  C_  x
) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   _Vcvv 3200    u. cun 3572    C_ wss 3574   class class class wbr 4653   {copab 4712    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by:  trclubi  13735  trclubiOLD  13736  trclubgi  13737  trclubgiOLD  13738  trclub  13739  trclubg  13740
  Copyright terms: Public domain W3C validator