Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperrel2dg Structured version   Visualization version   GIF version

Theorem trrelsuperrel2dg 37963
Description: Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.)
Hypothesis
Ref Expression
trrelsuperrel2dg.s (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
Assertion
Ref Expression
trrelsuperrel2dg (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))

Proof of Theorem trrelsuperrel2dg
StepHypRef Expression
1 ssun1 3776 . . 3 𝑅 ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
2 trrelsuperrel2dg.s . . 3 (𝜑𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
31, 2syl5sseqr 3654 . 2 (𝜑𝑅𝑆)
4 xptrrel 13719 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (dom 𝑅 × ran 𝑅)
5 ssun2 3777 . . . . 5 (dom 𝑅 × ran 𝑅) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
64, 5sstri 3612 . . . 4 ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))
76a1i 11 . . 3 (𝜑 → ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
82, 2coeq12d 5286 . . . 4 (𝜑 → (𝑆𝑆) = ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
9 coundir 5637 . . . . . 6 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
10 relcnv 5503 . . . . . . 7 Rel 𝑅
11 cocnvcnv1 5646 . . . . . . . . 9 (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
12 relssdmrn 5656 . . . . . . . . . . 11 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
13 dmcnvcnv 5348 . . . . . . . . . . . 12 dom 𝑅 = dom 𝑅
14 rncnvcnv 5349 . . . . . . . . . . . 12 ran 𝑅 = ran 𝑅
1513, 14xpeq12i 5137 . . . . . . . . . . 11 (dom 𝑅 × ran 𝑅) = (dom 𝑅 × ran 𝑅)
1612, 15syl6sseq 3651 . . . . . . . . . 10 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
17 coss1 5277 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1816, 17syl 17 . . . . . . . . 9 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
1911, 18syl5eqssr 3650 . . . . . . . 8 (Rel 𝑅 → (𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
20 ssequn1 3783 . . . . . . . 8 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ↔ ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2119, 20sylib 208 . . . . . . 7 (Rel 𝑅 → ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))))
2210, 21ax-mp 5 . . . . . 6 ((𝑅 ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ∪ ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
239, 22eqtri 2644 . . . . 5 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅)))
24 coundi 5636 . . . . . 6 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
25 cocnvcnv2 5647 . . . . . . . . 9 ((dom 𝑅 × ran 𝑅) ∘ 𝑅) = ((dom 𝑅 × ran 𝑅) ∘ 𝑅)
26 coss2 5278 . . . . . . . . . 10 (𝑅 ⊆ (dom 𝑅 × ran 𝑅) → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2716, 26syl 17 . . . . . . . . 9 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
2825, 27syl5eqssr 3650 . . . . . . . 8 (Rel 𝑅 → ((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
29 ssequn1 3783 . . . . . . . 8 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ⊆ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)) ↔ (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3028, 29sylib 208 . . . . . . 7 (Rel 𝑅 → (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
3110, 30ax-mp 5 . . . . . 6 (((dom 𝑅 × ran 𝑅) ∘ 𝑅) ∪ ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3224, 31eqtri 2644 . . . . 5 ((dom 𝑅 × ran 𝑅) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
3323, 32eqtri 2644 . . . 4 ((𝑅 ∪ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅))
348, 33syl6eq 2672 . . 3 (𝜑 → (𝑆𝑆) = ((dom 𝑅 × ran 𝑅) ∘ (dom 𝑅 × ran 𝑅)))
357, 34, 23sstr4d 3648 . 2 (𝜑 → (𝑆𝑆) ⊆ 𝑆)
363, 35jca 554 1 (𝜑 → (𝑅𝑆 ∧ (𝑆𝑆) ⊆ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  cun 3572  wss 3574   × cxp 5112  ccnv 5113  dom cdm 5114  ran crn 5115  ccom 5118  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator