| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl5sseqr | Structured version Visualization version GIF version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| syl5sseqr.1 | ⊢ 𝐵 ⊆ 𝐴 |
| syl5sseqr.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| syl5sseqr | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5sseqr.1 | . . 3 ⊢ 𝐵 ⊆ 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 3 | syl5sseqr.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 4 | 2, 3 | sseqtr4d 3642 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Copyright terms: Public domain | W3C validator |