| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trrelsuperrel2dg | Structured version Visualization version Unicode version | ||
| Description: Concrete construction of
a superclass of relation |
| Ref | Expression |
|---|---|
| trrelsuperrel2dg.s |
|
| Ref | Expression |
|---|---|
| trrelsuperrel2dg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3776 |
. . 3
| |
| 2 | trrelsuperrel2dg.s |
. . 3
| |
| 3 | 1, 2 | syl5sseqr 3654 |
. 2
|
| 4 | xptrrel 13719 |
. . . . 5
| |
| 5 | ssun2 3777 |
. . . . 5
| |
| 6 | 4, 5 | sstri 3612 |
. . . 4
|
| 7 | 6 | a1i 11 |
. . 3
|
| 8 | 2, 2 | coeq12d 5286 |
. . . 4
|
| 9 | coundir 5637 |
. . . . . 6
| |
| 10 | relcnv 5503 |
. . . . . . 7
| |
| 11 | cocnvcnv1 5646 |
. . . . . . . . 9
| |
| 12 | relssdmrn 5656 |
. . . . . . . . . . 11
| |
| 13 | dmcnvcnv 5348 |
. . . . . . . . . . . 12
| |
| 14 | rncnvcnv 5349 |
. . . . . . . . . . . 12
| |
| 15 | 13, 14 | xpeq12i 5137 |
. . . . . . . . . . 11
|
| 16 | 12, 15 | syl6sseq 3651 |
. . . . . . . . . 10
|
| 17 | coss1 5277 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | syl 17 |
. . . . . . . . 9
|
| 19 | 11, 18 | syl5eqssr 3650 |
. . . . . . . 8
|
| 20 | ssequn1 3783 |
. . . . . . . 8
| |
| 21 | 19, 20 | sylib 208 |
. . . . . . 7
|
| 22 | 10, 21 | ax-mp 5 |
. . . . . 6
|
| 23 | 9, 22 | eqtri 2644 |
. . . . 5
|
| 24 | coundi 5636 |
. . . . . 6
| |
| 25 | cocnvcnv2 5647 |
. . . . . . . . 9
| |
| 26 | coss2 5278 |
. . . . . . . . . 10
| |
| 27 | 16, 26 | syl 17 |
. . . . . . . . 9
|
| 28 | 25, 27 | syl5eqssr 3650 |
. . . . . . . 8
|
| 29 | ssequn1 3783 |
. . . . . . . 8
| |
| 30 | 28, 29 | sylib 208 |
. . . . . . 7
|
| 31 | 10, 30 | ax-mp 5 |
. . . . . 6
|
| 32 | 24, 31 | eqtri 2644 |
. . . . 5
|
| 33 | 23, 32 | eqtri 2644 |
. . . 4
|
| 34 | 8, 33 | syl6eq 2672 |
. . 3
|
| 35 | 7, 34, 2 | 3sstr4d 3648 |
. 2
|
| 36 | 3, 35 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |