Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trrelsuperrel2dg Structured version   Visualization version   Unicode version

Theorem trrelsuperrel2dg 37963
Description: Concrete construction of a superclass of relation  R which is a transitive relation. (Contributed by RP, 20-Jul-2020.)
Hypothesis
Ref Expression
trrelsuperrel2dg.s  |-  ( ph  ->  S  =  ( R  u.  ( dom  R  X.  ran  R ) ) )
Assertion
Ref Expression
trrelsuperrel2dg  |-  ( ph  ->  ( R  C_  S  /\  ( S  o.  S
)  C_  S )
)

Proof of Theorem trrelsuperrel2dg
StepHypRef Expression
1 ssun1 3776 . . 3  |-  R  C_  ( R  u.  ( dom  R  X.  ran  R
) )
2 trrelsuperrel2dg.s . . 3  |-  ( ph  ->  S  =  ( R  u.  ( dom  R  X.  ran  R ) ) )
31, 2syl5sseqr 3654 . 2  |-  ( ph  ->  R  C_  S )
4 xptrrel 13719 . . . . 5  |-  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )  C_  ( dom  R  X.  ran  R
)
5 ssun2 3777 . . . . 5  |-  ( dom 
R  X.  ran  R
)  C_  ( R  u.  ( dom  R  X.  ran  R ) )
64, 5sstri 3612 . . . 4  |-  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )  C_  ( R  u.  ( dom  R  X.  ran  R ) )
76a1i 11 . . 3  |-  ( ph  ->  ( ( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R ) )  C_  ( R  u.  ( dom  R  X.  ran  R
) ) )
82, 2coeq12d 5286 . . . 4  |-  ( ph  ->  ( S  o.  S
)  =  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )
9 coundir 5637 . . . . . 6  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  ( ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  u.  (
( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )
10 relcnv 5503 . . . . . . 7  |-  Rel  `' `' R
11 cocnvcnv1 5646 . . . . . . . . 9  |-  ( `' `' R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )
12 relssdmrn 5656 . . . . . . . . . . 11  |-  ( Rel  `' `' R  ->  `' `' R  C_  ( dom  `' `' R  X.  ran  `' `' R ) )
13 dmcnvcnv 5348 . . . . . . . . . . . 12  |-  dom  `' `' R  =  dom  R
14 rncnvcnv 5349 . . . . . . . . . . . 12  |-  ran  `' `' R  =  ran  R
1513, 14xpeq12i 5137 . . . . . . . . . . 11  |-  ( dom  `' `' R  X.  ran  `' `' R )  =  ( dom  R  X.  ran  R )
1612, 15syl6sseq 3651 . . . . . . . . . 10  |-  ( Rel  `' `' R  ->  `' `' R  C_  ( dom  R  X.  ran  R ) )
17 coss1 5277 . . . . . . . . . 10  |-  ( `' `' R  C_  ( dom 
R  X.  ran  R
)  ->  ( `' `' R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  (
( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )
1816, 17syl 17 . . . . . . . . 9  |-  ( Rel  `' `' R  ->  ( `' `' R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  (
( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )
1911, 18syl5eqssr 3650 . . . . . . . 8  |-  ( Rel  `' `' R  ->  ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R
) ) ) )
20 ssequn1 3783 . . . . . . . 8  |-  ( ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  C_  ( ( dom  R  X.  ran  R
)  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  <->  ( ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  u.  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R
) ) ) )  =  ( ( dom 
R  X.  ran  R
)  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )
2119, 20sylib 208 . . . . . . 7  |-  ( Rel  `' `' R  ->  ( ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  u.  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )
2210, 21ax-mp 5 . . . . . 6  |-  ( ( R  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  u.  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )
239, 22eqtri 2644 . . . . 5  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )
24 coundi 5636 . . . . . 6  |-  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  ( ( ( dom  R  X.  ran  R )  o.  R
)  u.  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) ) )
25 cocnvcnv2 5647 . . . . . . . . 9  |-  ( ( dom  R  X.  ran  R )  o.  `' `' R )  =  ( ( dom  R  X.  ran  R )  o.  R
)
26 coss2 5278 . . . . . . . . . 10  |-  ( `' `' R  C_  ( dom 
R  X.  ran  R
)  ->  ( ( dom  R  X.  ran  R
)  o.  `' `' R )  C_  (
( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R
) ) )
2716, 26syl 17 . . . . . . . . 9  |-  ( Rel  `' `' R  ->  ( ( dom  R  X.  ran  R )  o.  `' `' R )  C_  (
( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R
) ) )
2825, 27syl5eqssr 3650 . . . . . . . 8  |-  ( Rel  `' `' R  ->  ( ( dom  R  X.  ran  R )  o.  R ) 
C_  ( ( dom 
R  X.  ran  R
)  o.  ( dom 
R  X.  ran  R
) ) )
29 ssequn1 3783 . . . . . . . 8  |-  ( ( ( dom  R  X.  ran  R )  o.  R
)  C_  ( ( dom  R  X.  ran  R
)  o.  ( dom 
R  X.  ran  R
) )  <->  ( (
( dom  R  X.  ran  R )  o.  R
)  u.  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R ) ) )
3028, 29sylib 208 . . . . . . 7  |-  ( Rel  `' `' R  ->  ( ( ( dom  R  X.  ran  R )  o.  R
)  u.  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R ) ) )
3110, 30ax-mp 5 . . . . . 6  |-  ( ( ( dom  R  X.  ran  R )  o.  R
)  u.  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R ) )
3224, 31eqtri 2644 . . . . 5  |-  ( ( dom  R  X.  ran  R )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) )
3323, 32eqtri 2644 . . . 4  |-  ( ( R  u.  ( dom 
R  X.  ran  R
) )  o.  ( R  u.  ( dom  R  X.  ran  R ) ) )  =  ( ( dom  R  X.  ran  R )  o.  ( dom  R  X.  ran  R
) )
348, 33syl6eq 2672 . . 3  |-  ( ph  ->  ( S  o.  S
)  =  ( ( dom  R  X.  ran  R )  o.  ( dom 
R  X.  ran  R
) ) )
357, 34, 23sstr4d 3648 . 2  |-  ( ph  ->  ( S  o.  S
)  C_  S )
363, 35jca 554 1  |-  ( ph  ->  ( R  C_  S  /\  ( S  o.  S
)  C_  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    u. cun 3572    C_ wss 3574    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115    o. ccom 5118   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator