![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > triun | Structured version Visualization version GIF version |
Description: The indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
triun | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4524 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | r19.29 3072 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
3 | nfcv 2764 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
4 | nfiu1 4550 | . . . . . . 7 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
5 | 3, 4 | nfss 3596 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
6 | trss 4761 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
7 | 6 | imp 445 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
8 | ssiun2 4563 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
9 | sstr2 3610 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐵 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
10 | 7, 8, 9 | syl2imc 41 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
11 | 5, 10 | rexlimi 3024 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | 1, 12 | sylan2b 492 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
14 | 13 | ralrimiva 2966 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
15 | dftr3 4756 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
16 | 14, 15 | sylibr 224 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∪ ciun 4520 Tr wtr 4752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-iun 4522 df-tr 4753 |
This theorem is referenced by: truni 4767 r1tr 8639 r1elssi 8668 iunord 42422 |
Copyright terms: Public domain | W3C validator |