MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrlin Structured version   Visualization version   GIF version

Theorem tsrlin 17219
Description: A toset is a linear order. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
tsrlin ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem tsrlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istsr.1 . . . . 5 𝑋 = dom 𝑅
21istsr2 17218 . . . 4 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥)))
32simprbi 480 . . 3 (𝑅 ∈ TosetRel → ∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥))
4 breq1 4656 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
5 breq2 4657 . . . . 5 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
64, 5orbi12d 746 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝐴𝑅𝑦𝑦𝑅𝐴)))
7 breq2 4657 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑅𝑦𝐴𝑅𝐵))
8 breq1 4656 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
97, 8orbi12d 746 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑅𝑦𝑦𝑅𝐴) ↔ (𝐴𝑅𝐵𝐵𝑅𝐴)))
106, 9rspc2v 3322 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑅𝑦𝑦𝑅𝑥) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
113, 10syl5com 31 . 2 (𝑅 ∈ TosetRel → ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴)))
12113impib 1262 1 ((𝑅 ∈ TosetRel ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  dom cdm 5114  PosetRelcps 17198   TosetRel ctsr 17199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-tsr 17201
This theorem is referenced by:  tsrlemax  17220  ordtrest2lem  21007  ordthauslem  21187  ordthaus  21188
  Copyright terms: Public domain W3C validator