Proof of Theorem ordtrest2lem
| Step | Hyp | Ref
| Expression |
| 1 | | inrab2 3900 |
. . . . 5
⊢ ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} |
| 2 | | ordtrest2.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| 3 | | sseqin2 3817 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑋 ↔ (𝑋 ∩ 𝐴) = 𝐴) |
| 4 | 2, 3 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∩ 𝐴) = 𝐴) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (𝑋 ∩ 𝐴) = 𝐴) |
| 6 | | rabeq 3192 |
. . . . . 6
⊢ ((𝑋 ∩ 𝐴) = 𝐴 → {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → {𝑤 ∈ (𝑋 ∩ 𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
| 8 | 1, 7 | syl5eq 2668 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧}) |
| 9 | | ordtrest2.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ TosetRel ) |
| 10 | | inex1g 4801 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 12 | | eqid 2622 |
. . . . . . . . . . 11
⊢ dom
(𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴)) |
| 13 | 12 | ordttopon 20997 |
. . . . . . . . . 10
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴)))) |
| 14 | 11, 13 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴)))) |
| 15 | | tsrps 17221 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ TosetRel → 𝑅 ∈
PosetRel) |
| 16 | 9, 15 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ PosetRel) |
| 17 | | ordtrest2.1 |
. . . . . . . . . . . 12
⊢ 𝑋 = dom 𝑅 |
| 18 | 17 | psssdm 17216 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| 19 | 16, 2, 18 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| 20 | 19 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴)) |
| 21 | 14, 20 | eleqtrd 2703 |
. . . . . . . 8
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴)) |
| 22 | | toponmax 20730 |
. . . . . . . 8
⊢
((ordTop‘(𝑅
∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 23 | 21, 22 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 24 | 23 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 25 | | rabid2 3118 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| 26 | | eleq1 2689 |
. . . . . . 7
⊢ (𝐴 = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 27 | 25, 26 | sylbir 225 |
. . . . . 6
⊢
(∀𝑤 ∈
𝐴 ¬ 𝑤𝑅𝑧 → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 28 | 24, 27 | syl5ibcom 235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 29 | | dfrex2 2996 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤𝑅𝑧 ↔ ¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| 30 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → (𝑤𝑅𝑧 ↔ 𝑥𝑅𝑧)) |
| 31 | 30 | cbvrexv 3172 |
. . . . . . 7
⊢
(∃𝑤 ∈
𝐴 𝑤𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝑧) |
| 32 | 29, 31 | bitr3i 266 |
. . . . . 6
⊢ (¬
∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝑧) |
| 33 | | ordttop 21004 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
| 34 | 11, 33 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
| 35 | 34 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top) |
| 36 | | 0opn 20709 |
. . . . . . . . . . 11
⊢
((ordTop‘(𝑅
∩ (𝐴 × 𝐴))) ∈ Top → ∅
∈ (ordTop‘(𝑅
∩ (𝐴 × 𝐴)))) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 38 | 37 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 39 | | eleq1 2689 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∅ ∈
(ordTop‘(𝑅 ∩
(𝐴 × 𝐴))))) |
| 40 | 38, 39 | syl5ibrcom 237 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 41 | | rabn0 3958 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧) |
| 42 | | breq1 4656 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑤𝑅𝑧 ↔ 𝑦𝑅𝑧)) |
| 43 | 42 | notbid 308 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧)) |
| 44 | 43 | cbvrexv 3172 |
. . . . . . . . . 10
⊢
(∃𝑤 ∈
𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) |
| 45 | 41, 44 | bitri 264 |
. . . . . . . . 9
⊢ ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧) |
| 46 | 9 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑅 ∈ TosetRel ) |
| 47 | 2 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → 𝐴 ⊆ 𝑋) |
| 48 | 47 | sselda 3603 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝑋) |
| 49 | | simpllr 799 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝑋) |
| 50 | 17 | tsrlin 17219 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ TosetRel ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 51 | 46, 48, 49, 50 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝑧 ∨ 𝑧𝑅𝑦)) |
| 52 | 51 | ord 392 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦𝑅𝑧 → 𝑧𝑅𝑦)) |
| 53 | | an4 865 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦))) |
| 54 | | ordtrest2.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴) |
| 55 | | rabss 3679 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({𝑧 ∈ 𝑋 ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦)} ⊆ 𝐴 ↔ ∀𝑧 ∈ 𝑋 ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 56 | 54, 55 | sylib 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ∀𝑧 ∈ 𝑋 ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 57 | 56 | r19.21bi 2932 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ∧ 𝑧 ∈ 𝑋) → ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 58 | 57 | an32s 846 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦) → 𝑧 ∈ 𝐴)) |
| 59 | 58 | impr 649 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥𝑅𝑧 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ 𝐴) |
| 60 | 53, 59 | sylan2b 492 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ 𝐴) |
| 61 | | brinxp 5181 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑤 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑤𝑅𝑧 ↔ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
| 62 | 61 | ancoms 469 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑤𝑅𝑧 ↔ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
| 63 | 62 | notbid 308 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧)) |
| 64 | 63 | rabbidva 3188 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ 𝐴 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 65 | 60, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 66 | 19 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴) |
| 67 | | rabeq 3192 |
. . . . . . . . . . . . . . . 16
⊢ (dom
(𝑅 ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤 ∈ 𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 69 | 65, 68 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧}) |
| 70 | 11 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 71 | 60, 66 | eleqtrrd 2704 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) |
| 72 | 12 | ordtopn1 20998 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 73 | 70, 71, 72 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 74 | 69, 73 | eqeltrd 2701 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 75 | 74 | anassrs 680 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ (𝑦 ∈ 𝐴 ∧ 𝑧𝑅𝑦)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 76 | 75 | expr 643 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (𝑧𝑅𝑦 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 77 | 52, 76 | syld 47 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) ∧ 𝑦 ∈ 𝐴) → (¬ 𝑦𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 78 | 77 | rexlimdva 3031 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → (∃𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 79 | 45, 78 | syl5bi 232 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → ({𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 80 | 40, 79 | pm2.61dne 2880 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑧)) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 81 | 80 | rexlimdvaa 3032 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∃𝑥 ∈ 𝐴 𝑥𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 82 | 32, 81 | syl5bi 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (¬ ∀𝑤 ∈ 𝐴 ¬ 𝑤𝑅𝑧 → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 83 | 28, 82 | pm2.61d 170 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → {𝑤 ∈ 𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 84 | 8, 83 | eqeltrd 2701 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 85 | 84 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |
| 86 | | dmexg 7097 |
. . . . . . 7
⊢ (𝑅 ∈ TosetRel → dom
𝑅 ∈
V) |
| 87 | 9, 86 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom 𝑅 ∈ V) |
| 88 | 17, 87 | syl5eqel 2705 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ V) |
| 89 | | rabexg 4812 |
. . . . 5
⊢ (𝑋 ∈ V → {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
| 90 | 88, 89 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
| 91 | 90 | ralrimivw 2967 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V) |
| 92 | | eqid 2622 |
. . . 4
⊢ (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧}) = (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧}) |
| 93 | | ineq1 3807 |
. . . . 5
⊢ (𝑣 = {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} → (𝑣 ∩ 𝐴) = ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴)) |
| 94 | 93 | eleq1d 2686 |
. . . 4
⊢ (𝑣 = {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} → ((𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 95 | 92, 94 | ralrnmpt 6368 |
. . 3
⊢
(∀𝑧 ∈
𝑋 {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 96 | 91, 95 | syl 17 |
. 2
⊢ (𝜑 → (∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧 ∈ 𝑋 ({𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))) |
| 97 | 85, 96 | mpbird 247 |
1
⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝑋 ↦ {𝑤 ∈ 𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) |