MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12-1 Structured version   Visualization version   GIF version

Theorem tz6.12-1 6210
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐹   𝑦,𝐴

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 5896 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 iota1 5865 . . 3 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
32biimpac 503 . 2 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
41, 3syl5eq 2668 1 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  ∃!weu 2470   class class class wbr 4653  cio 5849  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-sbc 3436  df-un 3579  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851  df-fv 5896
This theorem is referenced by:  tz6.12  6211  tz6.12c  6213  funbrfv  6234  setrec2lem2  42441
  Copyright terms: Public domain W3C validator