Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2lem2 Structured version   Visualization version   GIF version

Theorem setrec2lem2 42441
Description: Lemma for setrec2 42442. The functional part of 𝐹 is a function. (Contributed by Emmett Weisz, 6-Mar-2021.) (New usage is discouraged.)
Assertion
Ref Expression
setrec2lem2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Distinct variable group:   𝑥,𝑦,𝐹

Proof of Theorem setrec2lem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relres 5426 . 2 Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2 fvex 6201 . . . . 5 (𝐹𝑥) ∈ V
3 eqeq2 2633 . . . . . . 7 (𝑧 = (𝐹𝑥) → (𝑦 = 𝑧𝑦 = (𝐹𝑥)))
43imbi2d 330 . . . . . 6 (𝑧 = (𝐹𝑥) → ((𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
54albidv 1849 . . . . 5 (𝑧 = (𝐹𝑥) → (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧) ↔ ∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))))
62, 5spcev 3300 . . . 4 (∀𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥)) → ∃𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧))
7 vex 3203 . . . . . 6 𝑦 ∈ V
87brres 5402 . . . . 5 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦 ↔ (𝑥𝐹𝑦𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}))
9 abid 2610 . . . . . . 7 (𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦} ↔ ∃!𝑦 𝑥𝐹𝑦)
10 tz6.12-1 6210 . . . . . . 7 ((𝑥𝐹𝑦 ∧ ∃!𝑦 𝑥𝐹𝑦) → (𝐹𝑥) = 𝑦)
119, 10sylan2b 492 . . . . . 6 ((𝑥𝐹𝑦𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → (𝐹𝑥) = 𝑦)
1211eqcomd 2628 . . . . 5 ((𝑥𝐹𝑦𝑥 ∈ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) → 𝑦 = (𝐹𝑥))
138, 12sylbi 207 . . . 4 (𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = (𝐹𝑥))
146, 13mpg 1724 . . 3 𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
1514ax-gen 1722 . 2 𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)
16 nfcv 2764 . . . 4 𝑥𝐹
17 nfab1 2766 . . . 4 𝑥{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
1816, 17nfres 5398 . . 3 𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
19 nfcv 2764 . . . 4 𝑦𝐹
20 nfeu1 2480 . . . . 5 𝑦∃!𝑦 𝑥𝐹𝑦
2120nfab 2769 . . . 4 𝑦{𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
2219, 21nfres 5398 . . 3 𝑦(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
23 nfcv 2764 . . 3 𝑧(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
2418, 22, 23dffun3f 42429 . 2 (Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ↔ (Rel (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}) ∧ ∀𝑥𝑧𝑦(𝑥(𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})𝑦𝑦 = 𝑧)))
251, 15, 24mpbir2an 955 1 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  {cab 2608   class class class wbr 4653  cres 5116  Rel wrel 5119  Fun wfun 5882  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  setrec2  42442
  Copyright terms: Public domain W3C validator