MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-1 Structured version   Visualization version   GIF version

Theorem tz7.44-1 7502
Description: The value of 𝐹 at . Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
tz7.44.2 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
tz7.44-1.3 𝐴 ∈ V
Assertion
Ref Expression
tz7.44-1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐹   𝑦,𝐺   𝑥,𝐻   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥)   𝐻(𝑦)   𝑋(𝑥)

Proof of Theorem tz7.44-1
StepHypRef Expression
1 fveq2 6191 . . . 4 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
2 reseq2 5391 . . . . . 6 (𝑦 = ∅ → (𝐹𝑦) = (𝐹 ↾ ∅))
3 res0 5400 . . . . . 6 (𝐹 ↾ ∅) = ∅
42, 3syl6eq 2672 . . . . 5 (𝑦 = ∅ → (𝐹𝑦) = ∅)
54fveq2d 6195 . . . 4 (𝑦 = ∅ → (𝐺‘(𝐹𝑦)) = (𝐺‘∅))
61, 5eqeq12d 2637 . . 3 (𝑦 = ∅ → ((𝐹𝑦) = (𝐺‘(𝐹𝑦)) ↔ (𝐹‘∅) = (𝐺‘∅)))
7 tz7.44.2 . . 3 (𝑦𝑋 → (𝐹𝑦) = (𝐺‘(𝐹𝑦)))
86, 7vtoclga 3272 . 2 (∅ ∈ 𝑋 → (𝐹‘∅) = (𝐺‘∅))
9 0ex 4790 . . 3 ∅ ∈ V
10 iftrue 4092 . . . 4 (𝑥 = ∅ → if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))) = 𝐴)
11 tz7.44.1 . . . 4 𝐺 = (𝑥 ∈ V ↦ if(𝑥 = ∅, 𝐴, if(Lim dom 𝑥, ran 𝑥, (𝐻‘(𝑥 dom 𝑥)))))
12 tz7.44-1.3 . . . 4 𝐴 ∈ V
1310, 11, 12fvmpt 6282 . . 3 (∅ ∈ V → (𝐺‘∅) = 𝐴)
149, 13ax-mp 5 . 2 (𝐺‘∅) = 𝐴
158, 14syl6eq 2672 1 (∅ ∈ 𝑋 → (𝐹‘∅) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  ifcif 4086   cuni 4436  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  Lim wlim 5724  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  rdg0  7517
  Copyright terms: Public domain W3C validator