MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgreq12g Structured version   Visualization version   GIF version

Theorem uhgreq12g 25960
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v 𝑉 = (Vtx‘𝐺)
uhgrf.e 𝐸 = (iEdg‘𝐺)
uhgreq12g.w 𝑊 = (Vtx‘𝐻)
uhgreq12g.f 𝐹 = (iEdg‘𝐻)
Assertion
Ref Expression
uhgreq12g (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph ))

Proof of Theorem uhgreq12g
StepHypRef Expression
1 uhgrf.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 uhgrf.e . . . . 5 𝐸 = (iEdg‘𝐺)
31, 2isuhgr 25955 . . . 4 (𝐺𝑋 → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
43adantr 481 . . 3 ((𝐺𝑋𝐻𝑌) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
54adantr 481 . 2 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
6 simpr 477 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → 𝐸 = 𝐹)
76dmeqd 5326 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → dom 𝐸 = dom 𝐹)
8 pweq 4161 . . . . . 6 (𝑉 = 𝑊 → 𝒫 𝑉 = 𝒫 𝑊)
98difeq1d 3727 . . . . 5 (𝑉 = 𝑊 → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅}))
109adantr 481 . . . 4 ((𝑉 = 𝑊𝐸 = 𝐹) → (𝒫 𝑉 ∖ {∅}) = (𝒫 𝑊 ∖ {∅}))
116, 7, 10feq123d 6034 . . 3 ((𝑉 = 𝑊𝐸 = 𝐹) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
12 uhgreq12g.w . . . . . 6 𝑊 = (Vtx‘𝐻)
13 uhgreq12g.f . . . . . 6 𝐹 = (iEdg‘𝐻)
1412, 13isuhgr 25955 . . . . 5 (𝐻𝑌 → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
1514adantl 482 . . . 4 ((𝐺𝑋𝐻𝑌) → (𝐻 ∈ UHGraph ↔ 𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅})))
1615bicomd 213 . . 3 ((𝐺𝑋𝐻𝑌) → (𝐹:dom 𝐹⟶(𝒫 𝑊 ∖ {∅}) ↔ 𝐻 ∈ UHGraph ))
1711, 16sylan9bbr 737 . 2 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐻 ∈ UHGraph ))
185, 17bitrd 268 1 (((𝐺𝑋𝐻𝑌) ∧ (𝑉 = 𝑊𝐸 = 𝐹)) → (𝐺 ∈ UHGraph ↔ 𝐻 ∈ UHGraph ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177  dom cdm 5114  wf 5884  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator