MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgreq12g Structured version   Visualization version   Unicode version

Theorem uhgreq12g 25960
Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017.) (Revised by AV, 18-Jan-2020.)
Hypotheses
Ref Expression
uhgrf.v  |-  V  =  (Vtx `  G )
uhgrf.e  |-  E  =  (iEdg `  G )
uhgreq12g.w  |-  W  =  (Vtx `  H )
uhgreq12g.f  |-  F  =  (iEdg `  H )
Assertion
Ref Expression
uhgreq12g  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( G  e. UHGraph  <->  H  e. UHGraph  ) )

Proof of Theorem uhgreq12g
StepHypRef Expression
1 uhgrf.v . . . . 5  |-  V  =  (Vtx `  G )
2 uhgrf.e . . . . 5  |-  E  =  (iEdg `  G )
31, 2isuhgr 25955 . . . 4  |-  ( G  e.  X  ->  ( G  e. UHGraph  <->  E : dom  E --> ( ~P V  \  { (/)
} ) ) )
43adantr 481 . . 3  |-  ( ( G  e.  X  /\  H  e.  Y )  ->  ( G  e. UHGraph  <->  E : dom  E --> ( ~P V  \  { (/) } ) ) )
54adantr 481 . 2  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( G  e. UHGraph  <->  E : dom  E --> ( ~P V  \  { (/) } ) ) )
6 simpr 477 . . . 4  |-  ( ( V  =  W  /\  E  =  F )  ->  E  =  F )
76dmeqd 5326 . . . 4  |-  ( ( V  =  W  /\  E  =  F )  ->  dom  E  =  dom  F )
8 pweq 4161 . . . . . 6  |-  ( V  =  W  ->  ~P V  =  ~P W
)
98difeq1d 3727 . . . . 5  |-  ( V  =  W  ->  ( ~P V  \  { (/) } )  =  ( ~P W  \  { (/) } ) )
109adantr 481 . . . 4  |-  ( ( V  =  W  /\  E  =  F )  ->  ( ~P V  \  { (/) } )  =  ( ~P W  \  { (/) } ) )
116, 7, 10feq123d 6034 . . 3  |-  ( ( V  =  W  /\  E  =  F )  ->  ( E : dom  E --> ( ~P V  \  { (/) } )  <->  F : dom  F --> ( ~P W  \  { (/) } ) ) )
12 uhgreq12g.w . . . . . 6  |-  W  =  (Vtx `  H )
13 uhgreq12g.f . . . . . 6  |-  F  =  (iEdg `  H )
1412, 13isuhgr 25955 . . . . 5  |-  ( H  e.  Y  ->  ( H  e. UHGraph  <->  F : dom  F --> ( ~P W  \  { (/)
} ) ) )
1514adantl 482 . . . 4  |-  ( ( G  e.  X  /\  H  e.  Y )  ->  ( H  e. UHGraph  <->  F : dom  F --> ( ~P W  \  { (/) } ) ) )
1615bicomd 213 . . 3  |-  ( ( G  e.  X  /\  H  e.  Y )  ->  ( F : dom  F --> ( ~P W  \  { (/) } )  <->  H  e. UHGraph  ) )
1711, 16sylan9bbr 737 . 2  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( E : dom  E --> ( ~P V  \  { (/) } )  <->  H  e. UHGraph  ) )
185, 17bitrd 268 1  |-  ( ( ( G  e.  X  /\  H  e.  Y
)  /\  ( V  =  W  /\  E  =  F ) )  -> 
( G  e. UHGraph  <->  H  e. UHGraph  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   -->wf 5884   ` cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator