MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrspanop Structured version   Visualization version   GIF version

Theorem uhgrspanop 26188
Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017.) (Revised by AV, 11-Oct-2020.)
Hypotheses
Ref Expression
uhgrspanop.v 𝑉 = (Vtx‘𝐺)
uhgrspanop.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
uhgrspanop (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph )

Proof of Theorem uhgrspanop
StepHypRef Expression
1 uhgrspanop.v . 2 𝑉 = (Vtx‘𝐺)
2 uhgrspanop.e . 2 𝐸 = (iEdg‘𝐺)
3 opex 4932 . . 3 𝑉, (𝐸𝐴)⟩ ∈ V
43a1i 11 . 2 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ V)
5 fvex 6201 . . . . 5 (Vtx‘𝐺) ∈ V
61, 5eqeltri 2697 . . . 4 𝑉 ∈ V
7 fvex 6201 . . . . . 6 (iEdg‘𝐺) ∈ V
82, 7eqeltri 2697 . . . . 5 𝐸 ∈ V
98resex 5443 . . . 4 (𝐸𝐴) ∈ V
10 opvtxfv 25884 . . . 4 ((𝑉 ∈ V ∧ (𝐸𝐴) ∈ V) → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
116, 9, 10mp2an 708 . . 3 (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉
1211a1i 11 . 2 (𝐺 ∈ UHGraph → (Vtx‘⟨𝑉, (𝐸𝐴)⟩) = 𝑉)
13 opiedgfv 25887 . . . 4 ((𝑉 ∈ V ∧ (𝐸𝐴) ∈ V) → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
146, 9, 13mp2an 708 . . 3 (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴)
1514a1i 11 . 2 (𝐺 ∈ UHGraph → (iEdg‘⟨𝑉, (𝐸𝐴)⟩) = (𝐸𝐴))
16 id 22 . 2 (𝐺 ∈ UHGraph → 𝐺 ∈ UHGraph )
171, 2, 4, 12, 15, 16uhgrspan 26184 1 (𝐺 ∈ UHGraph → ⟨𝑉, (𝐸𝐴)⟩ ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cop 4183  cres 5116  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-subgr 26160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator