![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgrspanop | Structured version Visualization version GIF version |
Description: A spanning subgraph of a pseudograph represented by an ordered pair is a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 13-Oct-2020.) |
Ref | Expression |
---|---|
uhgrspanop.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgrspanop.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
upgrspanop | ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspanop.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | uhgrspanop.e | . . . . 5 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vex 3203 | . . . . . 6 ⊢ 𝑔 ∈ V | |
4 | 3 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ V) |
5 | simprl 794 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (Vtx‘𝑔) = 𝑉) | |
6 | simprr 796 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) | |
7 | simpl 473 | . . . . 5 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝐺 ∈ UPGraph ) | |
8 | 1, 2, 4, 5, 6, 7 | upgrspan 26185 | . . . 4 ⊢ ((𝐺 ∈ UPGraph ∧ ((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴))) → 𝑔 ∈ UPGraph ) |
9 | 8 | ex 450 | . . 3 ⊢ (𝐺 ∈ UPGraph → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph )) |
10 | 9 | alrimiv 1855 | . 2 ⊢ (𝐺 ∈ UPGraph → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = (𝐸 ↾ 𝐴)) → 𝑔 ∈ UPGraph )) |
11 | fvex 6201 | . . . 4 ⊢ (Vtx‘𝐺) ∈ V | |
12 | 1, 11 | eqeltri 2697 | . . 3 ⊢ 𝑉 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → 𝑉 ∈ V) |
14 | fvex 6201 | . . . . 5 ⊢ (iEdg‘𝐺) ∈ V | |
15 | 2, 14 | eqeltri 2697 | . . . 4 ⊢ 𝐸 ∈ V |
16 | 15 | resex 5443 | . . 3 ⊢ (𝐸 ↾ 𝐴) ∈ V |
17 | 16 | a1i 11 | . 2 ⊢ (𝐺 ∈ UPGraph → (𝐸 ↾ 𝐴) ∈ V) |
18 | 10, 13, 17 | gropeld 25925 | 1 ⊢ (𝐺 ∈ UPGraph → 〈𝑉, (𝐸 ↾ 𝐴)〉 ∈ UPGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 〈cop 4183 ↾ cres 5116 ‘cfv 5888 Vtxcvtx 25874 iEdgciedg 25875 UPGraph cupgr 25975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-1st 7168 df-2nd 7169 df-vtx 25876 df-iedg 25877 df-edg 25940 df-uhgr 25953 df-upgr 25977 df-subgr 26160 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |