MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrun Structured version   Visualization version   GIF version

Theorem uhgrun 25969
Description: The union 𝑈 of two (undirected) hypergraphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a hypergraph with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
Hypotheses
Ref Expression
uhgrun.g (𝜑𝐺 ∈ UHGraph )
uhgrun.h (𝜑𝐻 ∈ UHGraph )
uhgrun.e 𝐸 = (iEdg‘𝐺)
uhgrun.f 𝐹 = (iEdg‘𝐻)
uhgrun.vg 𝑉 = (Vtx‘𝐺)
uhgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
uhgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
uhgrun.u (𝜑𝑈𝑊)
uhgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
uhgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
uhgrun (𝜑𝑈 ∈ UHGraph )

Proof of Theorem uhgrun
StepHypRef Expression
1 uhgrun.g . . . . 5 (𝜑𝐺 ∈ UHGraph )
2 uhgrun.vg . . . . . 6 𝑉 = (Vtx‘𝐺)
3 uhgrun.e . . . . . 6 𝐸 = (iEdg‘𝐺)
42, 3uhgrf 25957 . . . . 5 (𝐺 ∈ UHGraph → 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
51, 4syl 17 . . . 4 (𝜑𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅}))
6 uhgrun.h . . . . . 6 (𝜑𝐻 ∈ UHGraph )
7 eqid 2622 . . . . . . 7 (Vtx‘𝐻) = (Vtx‘𝐻)
8 uhgrun.f . . . . . . 7 𝐹 = (iEdg‘𝐻)
97, 8uhgrf 25957 . . . . . 6 (𝐻 ∈ UHGraph → 𝐹:dom 𝐹⟶(𝒫 (Vtx‘𝐻) ∖ {∅}))
106, 9syl 17 . . . . 5 (𝜑𝐹:dom 𝐹⟶(𝒫 (Vtx‘𝐻) ∖ {∅}))
11 uhgrun.vh . . . . . . . . 9 (𝜑 → (Vtx‘𝐻) = 𝑉)
1211eqcomd 2628 . . . . . . . 8 (𝜑𝑉 = (Vtx‘𝐻))
1312pweqd 4163 . . . . . . 7 (𝜑 → 𝒫 𝑉 = 𝒫 (Vtx‘𝐻))
1413difeq1d 3727 . . . . . 6 (𝜑 → (𝒫 𝑉 ∖ {∅}) = (𝒫 (Vtx‘𝐻) ∖ {∅}))
1514feq3d 6032 . . . . 5 (𝜑 → (𝐹:dom 𝐹⟶(𝒫 𝑉 ∖ {∅}) ↔ 𝐹:dom 𝐹⟶(𝒫 (Vtx‘𝐻) ∖ {∅})))
1610, 15mpbird 247 . . . 4 (𝜑𝐹:dom 𝐹⟶(𝒫 𝑉 ∖ {∅}))
17 uhgrun.i . . . 4 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
185, 16, 17fun2d 6068 . . 3 (𝜑 → (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶(𝒫 𝑉 ∖ {∅}))
19 uhgrun.un . . . 4 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
2019dmeqd 5326 . . . . 5 (𝜑 → dom (iEdg‘𝑈) = dom (𝐸𝐹))
21 dmun 5331 . . . . 5 dom (𝐸𝐹) = (dom 𝐸 ∪ dom 𝐹)
2220, 21syl6eq 2672 . . . 4 (𝜑 → dom (iEdg‘𝑈) = (dom 𝐸 ∪ dom 𝐹))
23 uhgrun.v . . . . . 6 (𝜑 → (Vtx‘𝑈) = 𝑉)
2423pweqd 4163 . . . . 5 (𝜑 → 𝒫 (Vtx‘𝑈) = 𝒫 𝑉)
2524difeq1d 3727 . . . 4 (𝜑 → (𝒫 (Vtx‘𝑈) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
2619, 22, 25feq123d 6034 . . 3 (𝜑 → ((iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅}) ↔ (𝐸𝐹):(dom 𝐸 ∪ dom 𝐹)⟶(𝒫 𝑉 ∖ {∅})))
2718, 26mpbird 247 . 2 (𝜑 → (iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅}))
28 uhgrun.u . . 3 (𝜑𝑈𝑊)
29 eqid 2622 . . . 4 (Vtx‘𝑈) = (Vtx‘𝑈)
30 eqid 2622 . . . 4 (iEdg‘𝑈) = (iEdg‘𝑈)
3129, 30isuhgr 25955 . . 3 (𝑈𝑊 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅})))
3228, 31syl 17 . 2 (𝜑 → (𝑈 ∈ UHGraph ↔ (iEdg‘𝑈):dom (iEdg‘𝑈)⟶(𝒫 (Vtx‘𝑈) ∖ {∅})))
3327, 32mpbird 247 1 (𝜑𝑈 ∈ UHGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  cdif 3571  cun 3572  cin 3573  c0 3915  𝒫 cpw 4158  {csn 4177  dom cdm 5114  wf 5884  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953
This theorem is referenced by:  uhgrunop  25970  ushgrun  25971
  Copyright terms: Public domain W3C validator