MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0 Structured version   Visualization version   GIF version

Theorem uhgr0 25968
Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020.)
Assertion
Ref Expression
uhgr0 ∅ ∈ UHGraph

Proof of Theorem uhgr0
StepHypRef Expression
1 f0 6086 . . 3 ∅:∅⟶∅
2 dm0 5339 . . . 4 dom ∅ = ∅
3 pw0 4343 . . . . . 6 𝒫 ∅ = {∅}
43difeq1i 3724 . . . . 5 (𝒫 ∅ ∖ {∅}) = ({∅} ∖ {∅})
5 difid 3948 . . . . 5 ({∅} ∖ {∅}) = ∅
64, 5eqtri 2644 . . . 4 (𝒫 ∅ ∖ {∅}) = ∅
72, 6feq23i 6039 . . 3 (∅:dom ∅⟶(𝒫 ∅ ∖ {∅}) ↔ ∅:∅⟶∅)
81, 7mpbir 221 . 2 ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})
9 0ex 4790 . . 3 ∅ ∈ V
10 vtxval0 25931 . . . . 5 (Vtx‘∅) = ∅
1110eqcomi 2631 . . . 4 ∅ = (Vtx‘∅)
12 iedgval0 25932 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2631 . . . 4 ∅ = (iEdg‘∅)
1411, 13isuhgr 25955 . . 3 (∅ ∈ V → (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅})))
159, 14ax-mp 5 . 2 (∅ ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 ∅ ∖ {∅}))
168, 15mpbir 221 1 ∅ ∈ UHGraph
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1990  Vcvv 3200  cdif 3571  c0 3915  𝒫 cpw 4158  {csn 4177  dom cdm 5114  wf 5884  cfv 5888  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-slot 15861  df-base 15863  df-edgf 25868  df-vtx 25876  df-iedg 25877  df-uhgr 25953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator