MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filconn Structured version   Visualization version   GIF version

Theorem filconn 21687
Description: A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filconn (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)

Proof of Theorem filconn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filunibas 21685 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
32fveq2d 6195 . . 3 (𝐹 ∈ (Fil‘𝑋) → (Fil‘ 𝐹) = (Fil‘𝑋))
41, 3eleqtrrd 2704 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘ 𝐹))
5 nss 3663 . . . . . . . 8 𝑥 ⊆ {∅} ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}))
6 simpll 790 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝐹 ∈ (Fil‘ 𝐹))
7 ssel2 3598 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (𝐹 ∪ {∅}) ∧ 𝑦𝑥) → 𝑦 ∈ (𝐹 ∪ {∅}))
87adantll 750 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → 𝑦 ∈ (𝐹 ∪ {∅}))
9 elun 3753 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐹 ∪ {∅}) ↔ (𝑦𝐹𝑦 ∈ {∅}))
108, 9sylib 208 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (𝑦𝐹𝑦 ∈ {∅}))
1110orcomd 403 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (𝑦 ∈ {∅} ∨ 𝑦𝐹))
1211ord 392 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (¬ 𝑦 ∈ {∅} → 𝑦𝐹))
1312impr 649 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦𝐹)
14 uniss 4458 . . . . . . . . . . . . . 14 (𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 (𝐹 ∪ {∅}))
1514ad2antlr 763 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 (𝐹 ∪ {∅}))
16 uniun 4456 . . . . . . . . . . . . . 14 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
17 0ex 4790 . . . . . . . . . . . . . . . 16 ∅ ∈ V
1817unisn 4451 . . . . . . . . . . . . . . 15 {∅} = ∅
1918uneq2i 3764 . . . . . . . . . . . . . 14 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
20 un0 3967 . . . . . . . . . . . . . 14 ( 𝐹 ∪ ∅) = 𝐹
2116, 19, 203eqtrri 2649 . . . . . . . . . . . . 13 𝐹 = (𝐹 ∪ {∅})
2215, 21syl6sseqr 3652 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 𝐹)
23 elssuni 4467 . . . . . . . . . . . . 13 (𝑦𝑥𝑦 𝑥)
2423ad2antrl 764 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦 𝑥)
25 filss 21657 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘ 𝐹) ∧ (𝑦𝐹 𝑥 𝐹𝑦 𝑥)) → 𝑥𝐹)
266, 13, 22, 24, 25syl13anc 1328 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥𝐹)
27 elun1 3780 . . . . . . . . . . 11 ( 𝑥𝐹 𝑥 ∈ (𝐹 ∪ {∅}))
2826, 27syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 ∈ (𝐹 ∪ {∅}))
2928ex 450 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → ((𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
3029exlimdv 1861 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
315, 30syl5bi 232 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (¬ 𝑥 ⊆ {∅} → 𝑥 ∈ (𝐹 ∪ {∅})))
32 uni0b 4463 . . . . . . . 8 ( 𝑥 = ∅ ↔ 𝑥 ⊆ {∅})
33 ssun2 3777 . . . . . . . . . 10 {∅} ⊆ (𝐹 ∪ {∅})
3417snid 4208 . . . . . . . . . 10 ∅ ∈ {∅}
3533, 34sselii 3600 . . . . . . . . 9 ∅ ∈ (𝐹 ∪ {∅})
36 eleq1 2689 . . . . . . . . 9 ( 𝑥 = ∅ → ( 𝑥 ∈ (𝐹 ∪ {∅}) ↔ ∅ ∈ (𝐹 ∪ {∅})))
3735, 36mpbiri 248 . . . . . . . 8 ( 𝑥 = ∅ → 𝑥 ∈ (𝐹 ∪ {∅}))
3832, 37sylbir 225 . . . . . . 7 (𝑥 ⊆ {∅} → 𝑥 ∈ (𝐹 ∪ {∅}))
3931, 38pm2.61d2 172 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → 𝑥 ∈ (𝐹 ∪ {∅}))
4039ex 450 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
4140alrimiv 1855 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
42 filin 21658 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
43 elun1 3780 . . . . . . . . . 10 ((𝑥𝑦) ∈ 𝐹 → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
4442, 43syl 17 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
45443expa 1265 . . . . . . . 8 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) ∧ 𝑦𝐹) → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
4645ralrimiva 2966 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ∀𝑦𝐹 (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
47 elsni 4194 . . . . . . . . 9 (𝑦 ∈ {∅} → 𝑦 = ∅)
48 ineq2 3808 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥𝑦) = (𝑥 ∩ ∅))
49 in0 3968 . . . . . . . . . . 11 (𝑥 ∩ ∅) = ∅
5048, 49syl6eq 2672 . . . . . . . . . 10 (𝑦 = ∅ → (𝑥𝑦) = ∅)
5150, 35syl6eqel 2709 . . . . . . . . 9 (𝑦 = ∅ → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5247, 51syl 17 . . . . . . . 8 (𝑦 ∈ {∅} → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5352rgen 2922 . . . . . . 7 𝑦 ∈ {∅} (𝑥𝑦) ∈ (𝐹 ∪ {∅})
54 ralun 3795 . . . . . . 7 ((∀𝑦𝐹 (𝑥𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑦 ∈ {∅} (𝑥𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5546, 53, 54sylancl 694 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5655ralrimiva 2966 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥𝐹𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
57 elsni 4194 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 = ∅)
58 ineq1 3807 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥𝑦) = (∅ ∩ 𝑦))
59 0in 3969 . . . . . . . . . 10 (∅ ∩ 𝑦) = ∅
6058, 59syl6eq 2672 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦) = ∅)
6160, 35syl6eqel 2709 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6261ralrimivw 2967 . . . . . . 7 (𝑥 = ∅ → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6357, 62syl 17 . . . . . 6 (𝑥 ∈ {∅} → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6463rgen 2922 . . . . 5 𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅})
65 ralun 3795 . . . . 5 ((∀𝑥𝐹𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6656, 64, 65sylancl 694 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
67 p0ex 4853 . . . . . 6 {∅} ∈ V
68 unexg 6959 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ {∅} ∈ V) → (𝐹 ∪ {∅}) ∈ V)
6967, 68mpan2 707 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ V)
70 istopg 20700 . . . . 5 ((𝐹 ∪ {∅}) ∈ V → ((𝐹 ∪ {∅}) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})) ∧ ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))))
7169, 70syl 17 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ((𝐹 ∪ {∅}) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})) ∧ ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))))
7241, 66, 71mpbir2and 957 . . 3 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ Top)
7321cldopn 20835 . . . . . . . 8 (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → ( 𝐹𝑥) ∈ (𝐹 ∪ {∅}))
74 elun 3753 . . . . . . . 8 (( 𝐹𝑥) ∈ (𝐹 ∪ {∅}) ↔ (( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}))
7573, 74sylib 208 . . . . . . 7 (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}))
76 elun 3753 . . . . . . . . . 10 (𝑥 ∈ (𝐹 ∪ {∅}) ↔ (𝑥𝐹𝑥 ∈ {∅}))
77 filfbas 21652 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ∈ (fBas‘ 𝐹))
78 fbncp 21643 . . . . . . . . . . . . . 14 ((𝐹 ∈ (fBas‘ 𝐹) ∧ 𝑥𝐹) → ¬ ( 𝐹𝑥) ∈ 𝐹)
7977, 78sylan 488 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ¬ ( 𝐹𝑥) ∈ 𝐹)
8079pm2.21d 118 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅))
8180ex 450 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥𝐹 → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8257a1i13 27 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ {∅} → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8381, 82jaod 395 . . . . . . . . . 10 (𝐹 ∈ (Fil‘ 𝐹) → ((𝑥𝐹𝑥 ∈ {∅}) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8476, 83syl5bi 232 . . . . . . . . 9 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ (𝐹 ∪ {∅}) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8584imp 445 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅))
86 elsni 4194 . . . . . . . . 9 (( 𝐹𝑥) ∈ {∅} → ( 𝐹𝑥) = ∅)
87 elssuni 4467 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 (𝐹 ∪ {∅}))
8887, 21syl6sseqr 3652 . . . . . . . . . . 11 (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 𝐹)
8988adantl 482 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → 𝑥 𝐹)
90 ssdif0 3942 . . . . . . . . . . 11 ( 𝐹𝑥 ↔ ( 𝐹𝑥) = ∅)
9190biimpri 218 . . . . . . . . . 10 (( 𝐹𝑥) = ∅ → 𝐹𝑥)
92 eqss 3618 . . . . . . . . . . 11 (𝑥 = 𝐹 ↔ (𝑥 𝐹 𝐹𝑥))
9392simplbi2 655 . . . . . . . . . 10 (𝑥 𝐹 → ( 𝐹𝑥𝑥 = 𝐹))
9489, 91, 93syl2im 40 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) = ∅ → 𝑥 = 𝐹))
9586, 94syl5 34 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ {∅} → 𝑥 = 𝐹))
9685, 95orim12d 883 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → ((( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
9775, 96syl5 34 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
9897expimpd 629 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → ((𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
99 elin 3796 . . . . 5 (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ↔ (𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))))
100 vex 3203 . . . . . 6 𝑥 ∈ V
101100elpr 4198 . . . . 5 (𝑥 ∈ {∅, 𝐹} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐹))
10298, 99, 1013imtr4g 285 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) → 𝑥 ∈ {∅, 𝐹}))
103102ssrdv 3609 . . 3 (𝐹 ∈ (Fil‘ 𝐹) → ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, 𝐹})
10421isconn2 21217 . . 3 ((𝐹 ∪ {∅}) ∈ Conn ↔ ((𝐹 ∪ {∅}) ∈ Top ∧ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, 𝐹}))
10572, 103, 104sylanbrc 698 . 2 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ Conn)
1064, 105syl 17 1 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179   cuni 4436  cfv 5888  fBascfbas 19734  Topctop 20698  Clsdccld 20820  Conncconn 21214  Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-fbas 19743  df-top 20699  df-cld 20823  df-conn 21215  df-fil 21650
This theorem is referenced by:  ufildr  21735
  Copyright terms: Public domain W3C validator