| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > untelirr | Structured version Visualization version GIF version | ||
| Description: We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 31697). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
| Ref | Expression |
|---|---|
| untelirr | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2689 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 2 | eleq2 2690 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
| 3 | 1, 2 | bitrd 268 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
| 4 | 3 | notbid 308 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐴 ∈ 𝐴)) |
| 5 | 4 | rspccv 3306 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴)) |
| 6 | 5 | pm2.01d 181 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
| This theorem is referenced by: untsucf 31587 untangtr 31591 dfon2lem3 31690 dfon2lem7 31694 dfon2lem8 31695 dfon2lem9 31696 |
| Copyright terms: Public domain | W3C validator |