Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untelirr Structured version   Visualization version   Unicode version

Theorem untelirr 31585
Description: We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 31697). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
untelirr  |-  ( A. x  e.  A  -.  x  e.  x  ->  -.  A  e.  A )
Distinct variable group:    x, A

Proof of Theorem untelirr
StepHypRef Expression
1 eleq1 2689 . . . . 5  |-  ( x  =  A  ->  (
x  e.  x  <->  A  e.  x ) )
2 eleq2 2690 . . . . 5  |-  ( x  =  A  ->  ( A  e.  x  <->  A  e.  A ) )
31, 2bitrd 268 . . . 4  |-  ( x  =  A  ->  (
x  e.  x  <->  A  e.  A ) )
43notbid 308 . . 3  |-  ( x  =  A  ->  ( -.  x  e.  x  <->  -.  A  e.  A ) )
54rspccv 3306 . 2  |-  ( A. x  e.  A  -.  x  e.  x  ->  ( A  e.  A  ->  -.  A  e.  A
) )
65pm2.01d 181 1  |-  ( A. x  e.  A  -.  x  e.  x  ->  -.  A  e.  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202
This theorem is referenced by:  untsucf  31587  untangtr  31591  dfon2lem3  31690  dfon2lem7  31694  dfon2lem8  31695  dfon2lem9  31696
  Copyright terms: Public domain W3C validator