![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > untsucf | Structured version Visualization version GIF version |
Description: If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
untsucf.1 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
untsucf | ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | untsucf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | nfv 1843 | . . 3 ⊢ Ⅎ𝑦 ¬ 𝑥 ∈ 𝑥 | |
3 | 1, 2 | nfral 2945 | . 2 ⊢ Ⅎ𝑦∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 |
4 | vex 3203 | . . . 4 ⊢ 𝑦 ∈ V | |
5 | 4 | elsuc 5794 | . . 3 ⊢ (𝑦 ∈ suc 𝐴 ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴)) |
6 | elequ1 1997 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥)) | |
7 | elequ2 2004 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) | |
8 | 6, 7 | bitrd 268 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦)) |
9 | 8 | notbid 308 | . . . . 5 ⊢ (𝑥 = 𝑦 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝑦 ∈ 𝑦)) |
10 | 9 | rspccv 3306 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑦)) |
11 | untelirr 31585 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | |
12 | eleq1 2689 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)) | |
13 | eleq2 2690 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴)) | |
14 | 12, 13 | bitrd 268 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑦 ↔ 𝐴 ∈ 𝐴)) |
15 | 14 | notbid 308 | . . . . 5 ⊢ (𝑦 = 𝐴 → (¬ 𝑦 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐴)) |
16 | 11, 15 | syl5ibrcom 237 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝑦 = 𝐴 → ¬ 𝑦 ∈ 𝑦)) |
17 | 10, 16 | jaod 395 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ((𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴) → ¬ 𝑦 ∈ 𝑦)) |
18 | 5, 17 | syl5bi 232 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → (𝑦 ∈ suc 𝐴 → ¬ 𝑦 ∈ 𝑦)) |
19 | 3, 18 | ralrimi 2957 | 1 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 = wceq 1483 ∈ wcel 1990 Ⅎwnfc 2751 ∀wral 2912 suc csuc 5725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-un 3579 df-sn 4178 df-suc 5729 |
This theorem is referenced by: dfon2lem3 31690 |
Copyright terms: Public domain | W3C validator |