Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem8 Structured version   Visualization version   GIF version

Theorem dfon2lem8 31695
Description: Lemma for dfon2 31697. The intersection of a nonempty class 𝐴 of new ordinals is itself a new ordinal and is contained within 𝐴 (Contributed by Scott Fenton, 26-Feb-2011.)
Assertion
Ref Expression
dfon2lem8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem dfon2lem8
Dummy variables 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7 𝑥 ∈ V
2 dfon2lem3 31690 . . . . . . 7 (𝑥 ∈ V → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧)))
31, 2ax-mp 5 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (Tr 𝑥 ∧ ∀𝑧𝑥 ¬ 𝑧𝑧))
43simpld 475 . . . . 5 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝑥)
54ralimi 2952 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝐴 Tr 𝑥)
6 trint 4768 . . . 4 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
75, 6syl 17 . . 3 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → Tr 𝐴)
87adantl 482 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → Tr 𝐴)
91dfon2lem7 31694 . . . . . . 7 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
109alrimiv 1855 . . . . . 6 (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
1110ralimi 2952 . . . . 5 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
12 df-ral 2917 . . . . . . 7 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥(𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
13 19.21v 1868 . . . . . . . 8 (∀𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) ↔ (𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
1413albii 1747 . . . . . . 7 (∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) ↔ ∀𝑥(𝑥𝐴 → ∀𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
1512, 14bitr4i 267 . . . . . 6 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
16 impexp 462 . . . . . . . 8 (((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
17162albii 1748 . . . . . . 7 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))))
18 eluni2 4440 . . . . . . . . . . 11 (𝑤 𝐴 ↔ ∃𝑥𝐴 𝑤𝑥)
1918biimpi 206 . . . . . . . . . 10 (𝑤 𝐴 → ∃𝑥𝐴 𝑤𝑥)
2019imim1i 63 . . . . . . . . 9 ((∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → (𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2120alimi 1739 . . . . . . . 8 (∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤(𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
22 alcom 2037 . . . . . . . . 9 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
23 19.23v 1902 . . . . . . . . . . 11 (∀𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥(𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
24 df-rex 2918 . . . . . . . . . . . 12 (∃𝑥𝐴 𝑤𝑥 ↔ ∃𝑥(𝑥𝐴𝑤𝑥))
2524imbi1i 339 . . . . . . . . . . 11 ((∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥(𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2623, 25bitr4i 267 . . . . . . . . . 10 (∀𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ (∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2726albii 1747 . . . . . . . . 9 (∀𝑤𝑥((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
2822, 27bitri 264 . . . . . . . 8 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) ↔ ∀𝑤(∃𝑥𝐴 𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
29 df-ral 2917 . . . . . . . 8 (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) ↔ ∀𝑤(𝑤 𝐴 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3021, 28, 293imtr4i 281 . . . . . . 7 (∀𝑥𝑤((𝑥𝐴𝑤𝑥) → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3117, 30sylbir 225 . . . . . 6 (∀𝑥𝑤(𝑥𝐴 → (𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3215, 31sylbi 207 . . . . 5 (∀𝑥𝐴𝑤(𝑤𝑥 → ∀𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3311, 32syl 17 . . . 4 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
3433adantl 482 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
35 intssuni 4499 . . . . 5 (𝐴 ≠ ∅ → 𝐴 𝐴)
36 ssralv 3666 . . . . 5 ( 𝐴 𝐴 → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3735, 36syl 17 . . . 4 (𝐴 ≠ ∅ → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3837adantr 481 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)))
3934, 38mpd 15 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤))
40 dfon2lem6 31693 . . 3 ((Tr 𝐴 ∧ ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴))
41 intex 4820 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
42 dfon2lem3 31690 . . . . . . . . . . 11 ( 𝐴 ∈ V → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡)))
4341, 42sylbi 207 . . . . . . . . . 10 (𝐴 ≠ ∅ → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡)))
4443imp 445 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (Tr 𝐴 ∧ ∀𝑡 𝐴 ¬ 𝑡𝑡))
4544simprd 479 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ∀𝑡 𝐴 ¬ 𝑡𝑡)
46 untelirr 31585 . . . . . . . 8 (∀𝑡 𝐴 ¬ 𝑡𝑡 → ¬ 𝐴 𝐴)
4745, 46syl 17 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ¬ 𝐴 𝐴)
4847adantlr 751 . . . . . 6 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ¬ 𝐴 𝐴)
49 risset 3062 . . . . . . . . . 10 ( 𝐴𝐴 ↔ ∃𝑡𝐴 𝑡 = 𝐴)
5049notbii 310 . . . . . . . . 9 𝐴𝐴 ↔ ¬ ∃𝑡𝐴 𝑡 = 𝐴)
51 ralnex 2992 . . . . . . . . 9 (∀𝑡𝐴 ¬ 𝑡 = 𝐴 ↔ ¬ ∃𝑡𝐴 𝑡 = 𝐴)
5250, 51bitr4i 267 . . . . . . . 8 𝐴𝐴 ↔ ∀𝑡𝐴 ¬ 𝑡 = 𝐴)
53 eqcom 2629 . . . . . . . . . . . 12 (𝑡 = 𝐴 𝐴 = 𝑡)
5453notbii 310 . . . . . . . . . . 11 𝑡 = 𝐴 ↔ ¬ 𝐴 = 𝑡)
5544simpld 475 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → Tr 𝐴)
5655adantlr 751 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → Tr 𝐴)
57 psseq2 3695 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑡 → (𝑦𝑥𝑦𝑡))
5857anbi1d 741 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑦𝑥 ∧ Tr 𝑦) ↔ (𝑦𝑡 ∧ Tr 𝑦)))
59 elequ2 2004 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝑦𝑥𝑦𝑡))
6058, 59imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6160albidv 1849 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (∀𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) ↔ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6261rspccv 3306 . . . . . . . . . . . . . . 15 (∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥) → (𝑡𝐴 → ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
6362adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)))
64 intss1 4492 . . . . . . . . . . . . . . . 16 (𝑡𝐴 𝐴𝑡)
65 dfpss2 3692 . . . . . . . . . . . . . . . . . . . 20 ( 𝐴𝑡 ↔ ( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡))
66 psseq1 3694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝐴 → (𝑦𝑡 𝐴𝑡))
67 treq 4758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = 𝐴 → (Tr 𝑦 ↔ Tr 𝐴))
6866, 67anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝐴 → ((𝑦𝑡 ∧ Tr 𝑦) ↔ ( 𝐴𝑡 ∧ Tr 𝐴)))
69 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝐴 → (𝑦𝑡 𝐴𝑡))
7068, 69imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝐴 → (((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) ↔ (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7170spcgv 3293 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝐴 ∈ V → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7241, 71sylbi 207 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡)))
7372imp 445 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → (( 𝐴𝑡 ∧ Tr 𝐴) → 𝐴𝑡))
7473expd 452 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → ( 𝐴𝑡 → (Tr 𝐴 𝐴𝑡)))
7565, 74syl5bir 233 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ≠ ∅ ∧ ∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡)) → (( 𝐴𝑡 ∧ ¬ 𝐴 = 𝑡) → (Tr 𝐴 𝐴𝑡)))
7675exp4b 632 . . . . . . . . . . . . . . . . . 18 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → ( 𝐴𝑡 → (¬ 𝐴 = 𝑡 → (Tr 𝐴 𝐴𝑡)))))
7776com45 97 . . . . . . . . . . . . . . . . 17 (𝐴 ≠ ∅ → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → ( 𝐴𝑡 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
7877com23 86 . . . . . . . . . . . . . . . 16 (𝐴 ≠ ∅ → ( 𝐴𝑡 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
7964, 78syl5 34 . . . . . . . . . . . . . . 15 (𝐴 ≠ ∅ → (𝑡𝐴 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
8079adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → (∀𝑦((𝑦𝑡 ∧ Tr 𝑦) → 𝑦𝑡) → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))))
8163, 80mpdd 43 . . . . . . . . . . . . 13 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (𝑡𝐴 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡))))
8281adantr 481 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (Tr 𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡))))
8356, 82mpid 44 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (¬ 𝐴 = 𝑡 𝐴𝑡)))
8454, 83syl7bi 245 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (𝑡𝐴 → (¬ 𝑡 = 𝐴 𝐴𝑡)))
8584ralrimiv 2965 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ∀𝑡𝐴𝑡 = 𝐴 𝐴𝑡))
86 ralim 2948 . . . . . . . . 9 (∀𝑡𝐴𝑡 = 𝐴 𝐴𝑡) → (∀𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀𝑡𝐴 𝐴𝑡))
8785, 86syl 17 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (∀𝑡𝐴 ¬ 𝑡 = 𝐴 → ∀𝑡𝐴 𝐴𝑡))
8852, 87syl5bi 232 . . . . . . 7 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (¬ 𝐴𝐴 → ∀𝑡𝐴 𝐴𝑡))
89 elintg 4483 . . . . . . . . 9 ( 𝐴 ∈ V → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9041, 89sylbi 207 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9190ad2antrr 762 . . . . . . 7 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → ( 𝐴 𝐴 ↔ ∀𝑡𝐴 𝐴𝑡))
9288, 91sylibrd 249 . . . . . 6 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → (¬ 𝐴𝐴 𝐴 𝐴))
9348, 92mt3d 140 . . . . 5 (((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) ∧ ∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴)) → 𝐴𝐴)
9493ex 450 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → 𝐴𝐴))
9594ancld 576 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴)))
9640, 95syl5 34 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → ((Tr 𝐴 ∧ ∀𝑤 𝐴𝑡((𝑡𝑤 ∧ Tr 𝑡) → 𝑡𝑤)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴)))
978, 39, 96mp2and 715 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴𝑦((𝑦𝑥 ∧ Tr 𝑦) → 𝑦𝑥)) → (∀𝑧((𝑧 𝐴 ∧ Tr 𝑧) → 𝑧 𝐴) ∧ 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  wpss 3575  c0 3915   cuni 4436   cint 4475  Tr wtr 4752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-iun 4522  df-tr 4753  df-suc 5729
This theorem is referenced by:  dfon2lem9  31696
  Copyright terms: Public domain W3C validator