MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrle2 Structured version   Visualization version   GIF version

Theorem upgrle2 26000
Description: An edge of an undirected pseudograph has at most two ends. (Contributed by AV, 6-Feb-2021.)
Hypothesis
Ref Expression
upgrle2.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgrle2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘(𝐼𝑋)) ≤ 2)

Proof of Theorem upgrle2
StepHypRef Expression
1 simpl 473 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐺 ∈ UPGraph )
2 upgruhgr 25997 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph )
3 upgrle2.i . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 25961 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
52, 4syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐼)
6 funfn 5918 . . . 4 (Fun 𝐼𝐼 Fn dom 𝐼)
75, 6sylib 208 . . 3 (𝐺 ∈ UPGraph → 𝐼 Fn dom 𝐼)
87adantr 481 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝐼 Fn dom 𝐼)
9 simpr 477 . 2 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → 𝑋 ∈ dom 𝐼)
10 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
1110, 3upgrle 25985 . 2 ((𝐺 ∈ UPGraph ∧ 𝐼 Fn dom 𝐼𝑋 ∈ dom 𝐼) → (#‘(𝐼𝑋)) ≤ 2)
121, 8, 9, 11syl3anc 1326 1 ((𝐺 ∈ UPGraph ∧ 𝑋 ∈ dom 𝐼) → (#‘(𝐼𝑋)) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  cfv 5888  cle 10075  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-uhgr 25953  df-upgr 25977
This theorem is referenced by:  upgr2pthnlp  26628
  Copyright terms: Public domain W3C validator